

Peregrine User Manual
v6.0

Linwei He, Thomas Pritchard, Jack Maggs,

Matthew Gilbert and Hongjia Lu

Page intentionally blank

ii

Contents

1 Introduction .. 1

1.1 About Peregrine ... 1

1.2 About LimitState .. 1

1.3 Disclaimer ... 1

1.4 Referencing .. 2

2 Installation & Licensing ... 2

2.1 Prerequisites ... 2

2.2 Installation.. 2

2.3 Licensing.. 2

2.3.1 The License Component ... 3

2.3.2 License Types .. 4

2.4 License Editions .. 5

2.4.1 Trial .. 5

2.4.2 Free .. 6

2.4.3 Standard ... 6

2.4.4 Professional .. 6

3 Quickstart .. 6

3.1 Basic Optimization Requirements ... 6

3.2 Example Files Location ... 7

3.3 Starting from a Grasshopper Defined Geometry ... 7

3.3.1 Design Domain .. 7

3.3.2 Loading ... 9

3.3.3 Solving the Optimization Problem ... 10

3.4 Starting from a Rhino Defined Geometry .. 11

3.5 Combining components for advanced optimization ... 13

3.6 Units .. 14

4 Basic Concepts .. 14

4.1 Workflow ... 14

5 Component Reference ... 15

5.1 Structures .. 15

5.1.1 Line Structure (LineStruct) ... 15

iii

5.1.2 Surface Structure (SurfStruct) .. 17

5.1.3 Define Topology (DefTop) ... 19

5.2 Loads.. 20

5.2.1 Load Case (LCase) .. 20

5.2.2 Point Load (PointL) .. 22

5.2.3 Line Load (LineL)... 23

5.2.4 Surface Load (SurfaceL) ... 24

5.2.5 Distributed Load (DistL) .. 25

5.2.6 Mirror... 26

5.3 Supports ... 27

5.3.1 Supports (Supports) .. 27

5.3.2 Point Support (PointS).. 28

5.3.3 Directional Support (DirectionalS) .. 29

5.3.4 Plane Support (PlaneS) .. 30

5.3.5 Plane SupportXYZ (PlaneSXYZ) ... 32

5.4 Domains ... 33

5.4.1 Design Domain (Domain) .. 33

5.4.2 Design Domain 1D (Domain 1D) .. 38

5.4.3 Material (Mat) ... 40

5.4.4 CHS Cross-Section (CHS) ... 43

5.4.5 I-Beam Cross-Section (IBeam) .. 44

5.5 Solve .. 46

5.5.1 Problem Specification (ProbSpec) ... 46

5.5.2 Layout Optimization (LO) .. 48

5.6 Post Process .. 51

5.6.1 Geometry Optimization (GO) .. 51

5.6.2 Simplify (Simplify) .. 53

5.6.3 Crossovers (Crossovers) ... 56

5.6.4 Filter (Filter) ... 59

5.6.5 Merge Joints (Merge) ... 61

5.6.6 Reduce Complexity (Complexity) ... 63

5.6.7 Stabilize (Stabilize) .. 66

iv

5.7 View ... 69

5.7.1 Gallery Settings (Gallery) .. 69

5.7.2 Solution Details (Details) .. 71

5.7.3 View Solution (View) .. 74

5.8 Tools ... 76

5.8.1 Settings (Settings) .. 76

5.8.2 Remove Duplicated Solutions (DeDupe) ... 77

5.9 License .. 78

5.9.1 Peregrine .. 78

6 Appendix ... 80

6.1 Theory ... 80

6.1.1 Layout Optimization ... 80

6.1.2 Geometry Optimization .. 82

6.1.3 Heaviside Simplification .. 82

6.1.4 Mirroring .. 84

6.1.5 Example Problem ... 88

6.2 Known Issues .. 89

7 References .. 89

List of Figures

Figure 1 – The Peregrine tab on the Grasshopper component panel (ribbon) 2

Figure 2 – Licensing options in the Peregrine License dialog.. 3

Figure 3 – The Peregrine RLM license details dialog ... 5

Figure 4 – Error message in the Stabilize component due to license restrictions on functionality

... 6

Figure 5 – Design Domain – Geometry Defined within Grasshopper ... 8

Figure 6 – Definition of the Design Domain within Grasshopper ... 8

Figure 7 – Specification of the Design Domain .. 9

Figure 8 – A Point Load added as a Load Case .. 10

Figure 9 – The Problem Specification and Layout Optimization components 10

Figure 10 – Vizualizing a solution .. 11

Figure 11 – Optimized solution (displayed in Rhino) .. 11

v

Figure 12 – A Design Domain geometry defined in Rhino .. 12

Figure 13 – Optimized Structure using Rhino defined Domain .. 12

Figure 14 – Optimization of a complex building (grillages and column sizing) 13

Figure 15 – The unit system can be defined or queried in the ProbSpec component 14

Figure 16 – Tooltip showing the units of the Layout Optimization volume output 14

Figure 17 – The Line Structure (LineStruct) icon ... 15

Figure 18 – The Line Structure (LineStruct) component ... 15

Figure 19 – The Surface Structure (SurfStruct) icon... 17

Figure 20 – The Surface Structure (SurfStruct) component .. 17

Figure 21 – The Define Topology icon .. 19

Figure 22 - The Define Topology component .. 19

Figure 23 – The Load Case icon .. 20

Figure 24 – The Load Case component.. 21

Figure 25 – The Point Load (PointL) icon .. 22

Figure 26 – The Point Load (PointL) component .. 22

Figure 27 – The Line Load (LineL) icon ... 23

Figure 28 – The Line Load (LineL) component .. 23

Figure 29 – The Surface Load (SurfaceL) icon ... 24

Figure 30 – The Surface Load (SurfaceL) component ... 24

Figure 31 – The Distributed Load (DistL) icon .. 25

Figure 32 – The Distributed Load (DistL) component .. 25

Figure 33 – The Mirror icon ... 26

Figure 34 – The Mirror component .. 26

Figure 35 – The Supports icon .. 27

Figure 36 – The Supports component .. 27

Figure 37 – The Point Support (PointS) icon .. 28

Figure 38 – The Point Support (PointS) component ... 28

Figure 39 – The Directional Support (DirectionS) icon .. 29

Figure 40 – The Directional Support (DirectionS) component ... 30

Figure 41 – The Plane Support (PlaneS) icon ... 30

Figure 42 – The Plane Support (PlaneS) component .. 31

Figure 43 – The Plane SupportXYZ (PlaneSXYZ) icon ... 32

vi

Figure 44 – The Plane SupportXYZ (PlaneSXYZ) component ... 32

Figure 45 – The Design Domain (Domain) icon .. 33

Figure 46 – The Design Domain (Domain) component .. 34

Figure 47 – A (simple) optimized truss structure ... 35

Figure 48 – An example of an optimized grillage structure (supported on four columns) 35

Figure 49 – Allowable mesh interfacing configurations .. 36

Figure 50 – The Design domain 1D (Domain 1D) icon ... 38

Figure 51 – The Design domain 1D (Domain 1D) component ... 38

Figure 52 – The Material (Mat) icon ... 40

Figure 53 – The Material (Mat) component ... 40

Figure 54 – The CHS Cross-Section (CHS) icon .. 43

Figure 55 – The CHS Cross-Section (CHS) component ... 43

Figure 56 – The I-Beam Cross-Section (IBeam) icon .. 44

Figure 57 – The I-Beam (IBeam) component ... 44

Figure 58 – Cross section of an I-Beam member.. 45

Figure 59 – I-Beam plan view .. 45

Figure 60 – The Problem Specification (ProbSpec) icon.. 46

Figure 61 – The Problem Specification (ProbSpec) component ... 46

Figure 62 – The Layout Optimization icon ... 48

Figure 63 – The Layout Optimization component ... 48

Figure 64 – The Simple2D problem in Rhino. Nodes previewed in green ... 50

Figure 65 – The Geometry Optimization (GO) icon .. 51

Figure 66 – The Geometry Optimization (GO) component .. 51

Figure 67 – The GO component used to reduce the complexity of a solution 53

Figure 68 – The Simplification icon ... 53

Figure 69 – The Simplify component .. 53

Figure 70 – Simplification of a truss structure .. 56

Figure 71 – The Crossovers icon .. 56

Figure 72 – The Crossovers component ... 56

Figure 73 – An example of the output of the crossovers functionality... 58

Figure 74 – The Filter icon ... 59

Figure 75 – The Filter component ... 59

vii

Figure 76 – Filtering the output from Layout Optimization stage (L = original, R = filtered) 61

Figure 77 – The Merge Joints icon .. 61

Figure 78 – The Merge Joints component .. 61

Figure 79 – A node Merge (L = original solution, R = node merge) .. 63

Figure 80 – The Reduce Complexity icon ... 63

Figure 81 – The Reduce Complexity component ... 64

Figure 82 – Reducing the complexity of the solution (left = original, right = refined) 66

Figure 83 – The Stabilize icon ... 66

Figure 84 – The Stabilize component ... 66

Figure 85 - The Gallery Settings (Gallery) icon ... 69

Figure 86 – The Gallery Settings (Gallery) component .. 69

Figure 87 – An Example of Gallery output ... 71

Figure 88 – The Solution Details icon .. 71

Figure 89 – The Solution Details (Details) component .. 71

Figure 90 – The View Solution icon... 74

Figure 91 – The View Solution component .. 74

Figure 92 – The Settings icon .. 76

Figure 93 – The Settings component .. 76

Figure 94 – The Remove Duplicated Solutions (DeDupe) icon ... 77

Figure 95 – The Remove Duplicated Solutions (DeDupe) component ... 77

Figure 96 – The License icon ... 78

Figure 97 – The License component ... 79

Figure 98 – The Peregrine License component and licensing context menu 79

Figure 99 – Example layout optimization ... 81

Figure 100 Heaviside smoothing for a range of values (after Fairclough et al., 2021). 83

Figure 101 – Optimization using "Default" mirroring properties .. 85

Figure 102 – Optimization using "Symmetric" mirroring properties ... 85

Figure 103 - Optimization using "Antisymmetric" mirroring properties ... 86

Figure 104 - Querying the normal direction of a plane using Vec and VDis components............ 86

Figure 105 – Master nodes (blue) and their mirror nodes (red) .. 87

Figure 106 – Rationalization of a cantilever truss (a) by using joint cost and GO (b) and GO (c)

.. 89

viii

1 - Introduction

1

1 Introduction

1.1 About Peregrine

Peregrine is a powerful structural layout optimization plugin for Grasshopper, the algorithmic

modelling environment built into the Rhino 3D modelling software. Peregrine can be used to

identify efficient (minimum volume) layouts of elements forming a truss, for a given design

domain and set of loads, supports and material properties. It includes a range of tools that

enable the practicality and efficiency of generated designs to be balanced.

Peregrine was originally developed in association with the University of Sheffield, Arup and

other partners as part of the UK government-funded BUILD-OPT research project. This

collaborative research project involved the Universities of Sheffield, Bath and Edinburgh,

AECOM, Arup, BuroHappold, Expedition Engineering, IStructE, Ramboll and the Steel

Construction Institute.

Example files can be accessed from:

 The Peregrine Examples desktop shortcut (installation option)

 Start > Peregrine > Example Files

 In the Peregrine folder within Rhino > Plug-ins

For more information, visit limitstate.com/peregrine

To purchase a license, visit shop.limitstate.com/peregrine

1.2 About LimitState

LimitState Ltd was spun out from the University of Sheffield in 2006 to develop and market

cutting edge ultimate analysis and design software for engineering professionals. Peregrine

takes advantage of LimitState:FORM technology, with the aim of making this useful for

building optimization and related problems. This is one of a number of LimitState products,

with applications in the structural, geotechnical and mechanical engineering sectors.

LimitState aims to be a world leading supplier of computational limit analysis and design

software. The company maintains close links with the University of Sheffield, enabling us to

draw on and rapidly implement the latest innovations.

For more information, visit limitstate.com/our-company

1.3 Disclaimer

Peregrine undergoes a wide array of tests before release. Notwithstanding this, bugs may exist

and therefore no guarantee can be given that the results generated are correct. Use of

https://limitstate.com/peregrine
shop.limitstate.com/peregrine
https://limitstate.com/our-company

2 - Installation & Licensing

2

Peregrine is therefore at the user’s own risk. Please refer to the license agreement for further

details.

1.4 Referencing

To reference this document, please use:

He L, Pritchard T, Maggs J, Gilbert M and Lu H (2021) Peregrine User Manual, LimitState

Limited, Sheffield.

2 Installation & Licensing

2.1 Prerequisites

These are the prerequisites for installing Peregrine:

• Rhino 6 SR19 or above (Rhino 6 Installer)

• Rhino 7 SR4 or above (Rhino 7 Installer)

If a copy of Rhino is not already installed, it can be downloaded from the Rhino3D website

(rhino3d.com); a fully functional trial version is available. Grasshopper is integrated into Rhino

6 and above.

2.2 Installation

Installation of Peregrine is a straightforward process:

> Download the Peregrine installer from www.limitstate.com/peregrine

> Double-click on the executable to start the installation process

> Follow the instructions provided by the installer

2.3 Licensing

Following installation of Peregrine, a new category called Peregrine should be visible as a tab

on the component panel (Figure 1) when starting Grasshopper (GH).

Figure 1 – The Peregrine tab on the Grasshopper component panel (ribbon)

https://www.rhino3d.com/
https://www.limitstate.com/peregrine

2 - Installation & Licensing

3

If no icons are visible under the Peregrine tab, select “Draw All Components” in the

Grasshopper “View” menu.

Detailed instructions for installing and licensing Peregrine are provided in the following

section.

2.3.1 The License Component

The Peregrine License component can be found at the right of the Peregrine toolbar (Figure 1).

After dragging on to the canvas, right-clicking the component name provides the user with the

ability to select between a number of different licensing systems (or Types), as seen in Figure 2:

Figure 2 – Licensing options in the Peregrine License dialog

Connecting the output of the License component to a Panel will display information relating to

the Peregrine version and currently active license:

• Version and build number

• Type (relating to the method being used to license the plug-in)

• Edition (relating to the functionality that is available)

• Use (relating to the type of usage that the license is valid for e.g. ‘non-commercial use

only’ or ‘all’)

To change the type of license that is active, open the context menu and select the desired

option. Note that this might cause some components in an active document to display error

messages relating to e.g. functionality that is not allowed. If this relates to the previous license,

right-clicking in free space on the canvas and selecting Recompute should update the

document. Similarly, you can also remove and re-connect a wire to the component in question.

2 - Installation & Licensing

4

2.3.2 License Types

2.3.2.1 Free

A Free license provides access to the most popular functionality of the plug-in, but restricts the

number of nodes that can be specified in the problem to 200 as well as a number of other

limitations (see www.limitstate.com/peregrine-buy for more details).

If no other valid license is found, the plug-in will run with a Free license by default.

If the user has attempted to specify a different license type, but the plug-in cannot find a valid

license of that kind, a Free license will be used, so that the basic functionality remains available.

However, the License component will warn that the requested license type is not active, so that

appropriate measures can be taken.

2.3.2.2 Cloud Zoo

Cloud Zoo licensing (or Zoo for short) is the most common method of licensing the plug-in. It

makes use of the McNeel Rhino Cloud Zoo infrastructure.

Switching to a Cloud Zoo license will query your Rhino installation and/or your Rhinoceros User

Account to determine if you have a valid Peregrine license. If you have not yet activated a

Peregrine license key on Cloud Zoo, you will need to obtain one from LimitState (see

shop.limitstate.com/peregrine). Adding the license to your Cloud Zoo account is then a matter

of logging in and following the “Add License” procedure. For more information on this, please

refer to limitstate.com/peregrine-cloud-zoo-licensing.

You can check if you have access to a Cloud Zoo license from within Rhino, by going to:

File > Properties > Licenses

This will also indicate how long the license will remain active should your machine be taken

offline.

2.3.2.3 RLM

Reprise License Manager (RLM) is an alternative to using Cloud Zoo. It requires either:

1. A standalone license (.lic) file on the host machine, or

2. A connection to a networked license server machine with the RLM software installed

and a valid network license file.

If a valid RLM license is not available, selecting the RLM option in the context menu will bring

up a dialog (Figure 3) that allows the user to either:

• Enter an RLM license activation key, or

• Enter a network location or a local license path

file:///D:/Repositories/lsapiSVN/main/trunk/code/DotNet/Peregrine/docs_not_distributed/www.limitstate.com/peregrine-buy
https://www.rhino3d.com/my-account/
https://www.rhino3d.com/my-account/
https://shop.limitstate.com/peregrine
https://www.limitstate.com/peregrine-cloud-zoo-licensing
https://reprisesoftware.com/

2 - Installation & Licensing

5

Figure 3 – The Peregrine RLM license details dialog

To obtain a RLM license of any kind, contact LimitState. Instructions for installing and

maintaining a RLM network license server are available in the Network Licensing Guide.

2.3.2.4 Academic

Academic licenses are made available to users on academic networks, wishing to use Peregrine

only for research and teaching purposes. The system checks to see if the requesting machine is

on a recognized academic network and, if it is, serves a 30 day license, so that the user can

work offline.

To check if your institution is currently recognized, on a machine that is connected to the

organization’s network, visit www.limitstate.com/academic-licensing and use the “Check

Academic License Availability” feature. Note that some institutions use a “split tunneling” VPN

system, which will require calls to http://acad.limitstate.com to be specifically set to use the IP

of the institution.

If your institution is not recognized by our systems, please get in touch to request that it is

added.

2.4 License Editions

The availability of certain Peregrine functionality is controlled by the license edition. More

information on the features available for each license edition, visit our website:

www.limitstate.com/peregrine-buy

Functionality that is restricted by license edition is referred to herein using red boxes. In the

plug-in, error messages on a component will warn the user when a feature is not available, for

example as shown in Figure 4:

The editions available are:

2.4.1 Trial

Upon first installation, the software will issue a Trial license with a duration of 14 days. This

provides access to the functions associated with a Professional license. After the 14 days have

https://www.limitstate.com/contact-us
https://www.limitstate.com/network-licensing
http://www.limitstate.com/academic-licensing
https://www.limitstate.com/contact-us
http://www.limitstate.com/peregrine-buy

3 - Quickstart

6

elapsed, the software will revert to a Free license, unless another license type has been

provided.

Note that the Trial license is node-locked and only available for an initial 14 day period

following installation. Reinstallation of the plugin will not reset the license and altering the

system clock will prevent the software from working and is likely to have unwanted

repercussions for other applications.

2.4.2 Free

As detailed in Section 2.3.2.1, a Free license provides access to core functionality, but with

some restrictions.

2.4.3 Standard

A Standard license Provides access to the most popular functionality of the plug-in and does

not restrict the number of nodes and load cases available to use.

2.4.4 Professional

A Professional license provides access to all popular and advanced functionality of the plug-in.

Figure 4 – Error message in the Stabilize component due to license restrictions on functionality

3 Quickstart

3.1 Basic Optimization Requirements

In order to undertake an optimization in Peregrine, a number of model features need to exist:

1. A design domain, within which the optimized structure will be situated.

2. Material properties, such that the optimum structure can be correctly dimensioned.

3. Support conditions, to provide sufficient restraint.

4. One or more loads for the optimized structure to resist.

The components within Peregrine allow these features to be quickly defined and used as the

basis of an optimization problem. Further functionality then allows the refinement and editing

3 - Quickstart

7

of the output from the optimization, in order to assist the user in realizing a structure that is

potentially more practically useful for their needs.

3.2 Example Files Location

Peregrine is installed with a number of example files for you to use and gain an understanding

of the software. By default, these are located in the Rhino installation directory, under:

> <Rhino>\Plug-ins\Peregrine\examples\

Files used in the Quickstart are available within the ‘Free ‘subdirectory. Other example files are

arranged into subdirectories according to the license type required to use the functionality

being demonstrated.

Example files can be accessed from:

 The Peregrine Examples desktop shortcut (installation option)

 Start > Peregrine > Example Files

 In the Peregrine folder within Rhino > Plug-ins

3.3 Starting from a Grasshopper Defined Geometry

This example builds the design domain for use in the optimization using a geometry defined

entirely within the Grasshopper environment.

> Open the example file Simple_2D.gh in Grasshopper.

3.3.1 Design Domain

3.3.1.1 Geometry

In the Rhino environment, a cantilever problem with a rectangular design domain will have

been generated (but no optimized solution exists as yet). The cantilever is supported on the left

edge and loaded on the right (Figure 5).

3 - Quickstart

8

Figure 5 – Design Domain – Geometry Defined within Grasshopper

We shall more closely examine the way in which the domain was generated.

Within Grasshopper, zoom into the area containing the Geometry component (top left, Figure

6)

Figure 6 – Definition of the Design Domain within Grasshopper

You will see that four points (Vector > Construct Point) have been specified. Each point is

defined by an X and Y co-ordinate (Z is omitted in this instance) and these are controlled by

length and height sliders. The co-ordinates are then combined as the input to define a 4 Point

Surface (accessed from the Freeform group in the Surface Component panel). In this way, the size

of the design domain can be altered by adjusting the sliders alone.

3 - Quickstart

9

3.3.1.2 Material Properties

Tracking the output (S) from the 4 Point Surface (Srf4Pt) it can be seen that the resultant Surface

is used as The Mesh input into the Domain. Other inputs include the Material Properties (Mat).

 Figure 7 – Specification of the Design Domain

The Material properties and how they affect the results of the optimization are discussed in

detail in the Component Reference section (Section 5).

3.3.1.3 Supports

Another input into the Domain is the Supports. In this particular problem, the supported

locations correspond to the two points that define the left boundary of the Design Domain [(0,

0) and (0, 50)]. As such, the input to each Point Support (PointS) is the output from one of these

original Point (Pt) components.

The remaining variable inputs are Boolean operators representing the restraint provided by

that support for each of the Cartesian directions. By default, restraint is assumed to be set to

True and therefore, as there is no additional input to change this state, the two Point Supports

are assumed fully fixed. The output from the Supports component is then used as input into the

Supports channel of the Domain component.

3.3.1.4 Nodal Divisions

The final input into the Domain component is a slider that outlines the number of nodes used in

the optimization problem – represented by the number of equally spaced divisions (NodeDiv)

into which the Domain is divided (see Section 5.4.1.4).

3.3.2 Loading

Loading in Peregrine can be applied at a Point (PointL), across a Surface (SurfaceL) or along a

Line (LineL). Individual loads, or groups of loads, can be made into separate Load Cases for input

into the LCase component.

3 - Quickstart

10

Figure 8 – A Point Load added as a Load Case

The Point Load (PointL) accepts a Position (Pos) and a Magnitude (Mag). In this problem, a PointL

of unit magnitude is applied in the downwards (negative) Y direction at mid-height on the right

edge of the design domain. The controls for this are situated in the “Point load” group and take

further input from the Geometry settings.

3.3.3 Solving the Optimization Problem

All the necessary aspects of the problem are now present. We have defined:

 Design domain geometry

 Loading

 Support

 Material properties

The listed features are combined as input into the Problem Specification (ProbSpec) component

(as the Domain and Load Case). The output from this component is then used as the ProbSpec

input into the Layout Optimization (LO) component (Figure 9). It is this latter component which

controls the optimization. A toggle is added to the Enable input, which can then be used as a

switch to turn on (and off) the optimizer kernel. Other inputs (e.g. JointCost) are optional

controls on the problem setup and are explained later in this document.

Figure 9 – The Problem Specification and Layout Optimization components

> To solve the optimization problem, toggle the “Enable” switch.

3 - Quickstart

11

Once the problem has been solved (which should take less than a second), the optimized truss

layout can be displayed in Rhino. This occurs by connecting the Solution Data (SolData) output

from the LO component to the SolData input of the View component (Figure 10):

Figure 10 – Vizualizing a solution

It should be observed that the connector turns from dark orange to gray, to signify that a valid

solution is available and is being displayed. The resultant structural geometry can be

highlighted in Rhino by selecting the View component in Grasshopper (Figure 11). It is possible

to determine the numerical solution (volume of the truss) by hovering over the Vol output of

either the Layout Optimization or View components.

Figure 11 – Optimized solution (displayed in Rhino)

3.4 Starting from a Rhino Defined Geometry

In addition to defining a design domain geometry using Grasshopper inputs, one can also utilize

geometries that have been defined within the Rhino environment itself. This is a good method

by which complex shapes can be incorporated into the optimization.

3 - Quickstart

12

> In Rhino, open the DirectionalSupport3D.3dm file

The geometry shown in Figure 12 will be loaded:

Figure 12 – A Design Domain geometry defined in Rhino

> In Grasshopper, open the DirectionalSupport.gh file

The problem will solve automatically and the resulting optimized structure shown in Rhino

(Figure 13):

Figure 13 – Optimized Structure using Rhino defined Domain

> In Grasshopper, explore the components to get an overview of how the problem is

constructed

3 - Quickstart

13

The geometry (Mesh) for the Design Domain can be seen to originate from a Brep component.

This, in-turn, references the geometry that is present in Rhino.

> Right-click the Brep component and select “Clear values”

We have just disassociated the geometry from the design domain. Notice that the Peregrine

workflow now contains a number of components showing warnings (orange). To associate the

Brep geometry once more:

> Right-click the Brep component and select “Set Multiple Breps”

> In Rhino, right-click and draw a box around the entire geometry (the Breps will turn

yellow)

> Press Enter

The geometry will now be associated with the Peregrine problem again. The optimization will

run and a solution will be presented.

3.5 Combining components for advanced optimization

Once familiar with the process of optimizing structures using Peregrine, it is possible to

develop complex optimization problems and solve them with relative ease. For example, one

can optimize grillages for a number of floors of a building and size the columns at the same

time. This is explored in Building_Commercial_Residential_Tower.gh (Figure 14):

Figure 14 – Optimization of a complex building (grillages and column sizing)

4 - Basic Concepts

14

3.6 Units

In Peregrine, all purely geometrical quantities (length, area, volume, position) adopt the same

unit system as that used by the current Peregrine file. The active setting can be queried in the

Units output of the Peregrine ProbSpec component and, in cases where the system being used

is not that which is desired, the units can be changed by entering e.g. “mm” or “m” into the Units

input (Figure 15):

Figure 15 – The unit system can be defined or queried in the ProbSpec component

All other quantities (force, pressure, material properties) use metric units (e.g. kN), and will

need to be specified as such. The units of a particular quantity can be seen by hovering over the

component input/output that uses that quantity, as shown in Figure 16:

Figure 16 – Tooltip showing the units of the Layout Optimization volume output

4 Basic Concepts

4.1 Workflow

Peregrine is designed to work in a logical left-to-right manner across the Component Panel.

The following are the subsections that appear in the Peregrine category:

• Structure – define a starting topology of the user’s own choosing

 Load – specify externally applied loads and combine these into load cases

5 - Component Reference

15

 Support – specify a set of support conditions for the problem

 Domain – define the geometric and material properties of the volume within which the

optimized structure must exist

 Solve – combine the design domain and load case(s) into a problem and optimize

 Post Process – take the results from the optimization and modify them as needed

 View – Visualize the optimized solution(s) in Rhino

 Tool – Useful tools for working with Peregrine output

 About – About Peregrine

5 Component Reference

5.1 Structures

5.1.1 Line Structure (LineStruct)

5.1.1.1 Icon

Figure 17 – The Line Structure (LineStruct) icon

5.1.1.2 Component

Figure 18 – The Line Structure (LineStruct) component

5.1.1.3 Description

A line or line-based structure. An object for loading or to represent a pre-existing structural

component that can be utilized within the optimization process.

5 - Component Reference

16

5.1.1.4 Summary

The Line Structure (LineStruct) component accepts a range of inputs and constructs a line or line

structure from these, for use within the optimization (e.g. as an element for loading, or to

represent a pre-existing structural component or frame that can be utilized within the

optimization process).

The Line input accepts a Line (Ln) element or elements (double-click the grasshopper canvas

and type “line” to bring up a list of line components – select the option titled “Line” with the

“create a line between two points” tooltip).

Divisions (Div) is an integer specifying how many equally sized divisions the line(s) should be

divided into for the purpose of e.g. applying load.

Min Area (MinA) is a floating point number describing the minimum cross-sectional area to

ascribe to the elements. By default this value is set to 0.0.

Move Direction (MoveDir) is a vector describing the direction (if any) that the line element can

move in. By default this value is set to (0.0, 0.0, 0.0) (no movement).

If Rigid is set to True, the line element ignores the stress constraints defined in the Mat

component. By default this value is set to False.

Bending Capacity (BendCap) accepts values of 0.0 or 1.0, as well as intermediate values. When

set to 0.0 (default) it is assumed that the line elements are rigid and cannot bend. When the

value is set to 1.0, the bending capacity of each line is finite, calculated based on the available

cross-section, taking due account of the presence of axial load. Note that due to the relative

inefficiency of bending as a load transmission mechanism, the finite bending capacity may not

be utilized in the optimal structure. By default this value is set to 0.0.

For an example of a Peregrine problem containing a LineStruct component, run the

Structure_LineStruct.gh file.

Note that problems containing multiple materials cannot be used in conjunction with a user-

defined line structure. If this attempted, a warning message will be displayed.

5.1.1.5 Input / Output

Input / Output Description Default Value

Line (in) Line or line based structure. N/A

Div (in)
Specifies how many equally sized divisions the line(s)
should be divided into for the purpose of e.g. applying
load.

10

5 - Component Reference

17

MinA (in)
A minimum cross-sectional area to ascribe to the
member(s).

0.0

MoveDir (in)
Describes the direction (if any) that the line element
can move in.

(0.0, 0.0, 0.0)

Rigid (in)
When True, ignores any limiting stress constraints
defined in the Material component.

False

BendCap (in)
Specify a bending capacity from 0.0 (no bending
capacity) to 1.0 (full bending capacity).

0.0

LineStruct (out)
A line or line-based structure. An object for loading or
to represent a pre-existing structural component that
can be utilized within the optimization process.

N/A

5.1.2 Surface Structure (SurfStruct)

5.1.2.1 Icon

Figure 19 – The Surface Structure (SurfStruct) icon

5.1.2.2 Component

Figure 20 – The Surface Structure (SurfStruct) component

5.1.2.3 Description

A surface structure described by a mesh and having properties used in structural analysis. An

object on to which loads are applied or to use as support.

5.1.2.4 Summary

The Surface Structure (SurfStruct) component is very similar in operation to the LineStruct

component. It accepts a range of input and constructs a surface structure from these, for use

within the optimization (e.g. as an object for loading).

5 - Component Reference

18

The Surface input accepts a Meshed Surface or Mesh (M) object.

Min Area (MinA) is a floating point number describing the minimum cross-sectional area to

ascribe to the elements of the mesh. By default this value is set to 0.0.

Move Direction (MoveDir) is a vector describing the direction (if any) that the mesh element can

move in.

If Rigid is set to True, the surface ignores the stress constraints defined in the Mat component.

Bending Capacity (BendCap) accepts values of 0.0 or 1.0, as well as intermediate values. When

set to 0.0 (default) it is assumed that the surface elements are rigid and cannot bend. When the

value is set to 1.0, the bending capacity of each element on the surface is finite, calculated

based on the available cross-section, taking due account of the presence of axial load. Note

that due to the relative inefficiency of bending as a load transmission mechanism, the finite

bending capacity may not be utilized in the optimal structure.

For an example of a Peregrine problem containing a SurfStruct, run the Structure_SurfStruct.gh

file.

5.1.2.5 Input / Output

Input / Output Description Default Value

Mesh (in)

Meshable surface(s) for load application. Note that

loading is distributed at the corner points of any input

geometry (i.e. use meshes for best coverage).

N/A

MinA (in)
A minimum cross-sectional area to ascribe to the

member(s)
0.0

MoveDir (in)
Describes the direction (if any) that the surface can

move in.
(0.0, 0.0, 0.0)

Rigid (in)
When True, ignores any limiting stress constraints

defined in the Material component.
False

BendCap (in)
Specify a bending capacity from 0.0 (no bending

capacity) to 1.0 (full bending capacity).
0.0

SurfStruct (out)

A surface structure described by a mesh and having

properties used in structural analysis. An object on to

which loads are applied or to use as support.

N/A

5 - Component Reference

19

5.1.3 Define Topology (DefTop)

5.1.3.1 Icon

Figure 21 – The Define Topology icon

5.1.3.2 Component

Figure 22 - The Define Topology component

5.1.3.3 Description

Define a Rhino structure and determine its efficiency. Post-optimization steps can also be

performed on the output to ascertain whether the layout can be improved.

5.1.3.4 Summary

The Define Topology component allows the user to define a 2D structure within Rhino and to

determine its efficiency, as well as to perform post-optimization steps to ascertain whether the

layout can be improved upon.

The component accepts a Problem Specification (ProbSpec) and a topology as a series of Lines (or

Polylines). The Lines can e.g. be imported via the use of a Curve (Crv) component into which the

topology is passed through the use of the “Set multiple curves” command.

Note that, as part of the functionality, the input topology is validated. If the topology is found

to be unstable, or if it contains parts that lie outside the design domain, a preliminary

Geometry Optimization is undertaken and will be pushed to grid or vertex of domain if it's

close enough. This distance is defined by the Tolerance (Tol) which is the fraction of the longest

diagonal of the domain below which member end points may be moved. By default this value is

set to 0.01.

The output consists of:

A Volume (Vol), which is the volume of the solution structure.

5 - Component Reference

20

The Solution Data (SolData) output packages together all the required data relating to the

optimization problem and optimal (least volume) structure in a form that can be used as input

into the Post-Process stages or displayed within the Rhino environment.

Lines, which is a list of all the elements in the structure.

For an example of a Peregrine problem containing a Define Topology component, run the

Structure_ConstructTopology.gh file.

5.1.3.5 Input / Output

Input / Output Description Default Value

ProbSpec (in)
A combination of one or more Domain(s) and Load

Case(s) for input into the Layout Optimization (LO).
N/A

Lines (in)
A user-defined structural topology formed from lines

or polylines.
N/A

Tol (in)

Measure of the proximity of member end points to the

edge of the design domain. Above this value, the joint

will be pushed back inside. The longest diagonal of the

model bounding box is determined and the proximity

is the percentage of this measure which is used as the

“search area” for domain violation.

0.01

Vol (out) Volume of the solution structure (in document units). N/A

SolData (out) Optimization solution data. N/A

Lines (out)
Output topology as line elements. Checked and fixed

to ensure nodal equilibrium and domain compliance.
N/A

5.2 Loads

5.2.1 Load Case (LCase)

5.2.1.1 Icon

Figure 23 – The Load Case icon

5 - Component Reference

21

5.2.1.2 Component

Figure 24 – The Load Case component

5.2.1.3 Description

A load or group of loads to be applied to the structure as an independent case.

Note:

• Specification of multiple load cases requires a Standard or Professional license.

5.2.1.4 Summary

The Load Case (LCase) component accepts one or more loads (PointL, SurfaceL, LineL, DistL). It

outputs a Load Case. Several Load Cases can be combined and used as input into the Problem

Specification (ProbSpec) component.

For an example of a Peregrine problem containing multiple load cases, run the

ProbSpec_MultipleLoadCases2.gh file.

5.2.1.5 Input / Output

Input / Output Description Default Value

PointL (in) A load applied at a specified point. N/A

SurfaceL (in) Loading applied to a meshable surface structure. N/A

LineL (in) Loading applied over the length of a line. N/A

DistL (in) Define a distributed load (for use with Grillages). N/A

Load Case (out)
A load or group of loads to be applied to the structure

as an independent case.
N/A

5 - Component Reference

22

5.2.2 Point Load (PointL)

5.2.2.1 Icon

Figure 25 – The Point Load (PointL) icon

5.2.2.2 Component

Figure 26 – The Point Load (PointL) component

5.2.2.3 Description

A load applied at a specified point.

5.2.2.4 Summary

The PointL component is used as input into a Load Case. It accepts {xyz} coordinates in

Cartesian space (Pos) and a magnitude (Mag) in kN. The output is a Point Load (PointL).

For an example of a Peregrine problem containing a point load, run the Simple2D.gh file.

5.2.2.5 Input / Output

Input / Output Description Default Value

Pos (in)
A location in Cartesian space, defined using a Construct

Point
N/A

Mag (in)
A vector describing the magnitude and direction of the

applied force (kN).
(0.0, 0.0, 0.0)

Mirror (in)
Apply a mirror of this load simultaneously? Requires a

mirror plane to be defined in ProbSpec.
0 (no mirror)

PointL (out) A load applied at a specified point. N/A

5 - Component Reference

23

5.2.3 Line Load (LineL)

5.2.3.1 Icon

Figure 27 – The Line Load (LineL) icon

5.2.3.2 Component

Figure 28 – The Line Load (LineL) component

5.2.3.3 Description

Loading applied over the length of a line.

5.2.3.4 Summary

The Line Load (LineL) component accepts a LineStruct as the definition of its geometry and

either a force in kN per unit length (DistF) or a total force in kN (TotF) to define the magnitude

of the load imparted. The output is a loaded line (LineL).

For an example of a Peregrine problem containing a line load, run the Structure_LineStruct.gh

file.

5.2.3.5 Input / Output

Input / Output Description Default Value

LineStruct (in)

A line or line-based structure. An object for loading or to

represent a pre-existing structural component that can be

utilized within the optimization process.

N/A

DistF (in) Force per unit length of line (kN/document unit). (0.0, 0.0, 0.0)

TotF (in)
Total force applied to the line (kN) (will be uniformly

distributed).
(0.0, 0.0, 0.0)

Mirror (in)
Apply a mirror of this load simultaneously? Requires a

mirror plane to be defined in ProbSpec.
0 (no mirror)

5 - Component Reference

24

LineL (out) Loading applied over the length of a line. N/A

5.2.4 Surface Load (SurfaceL)

5.2.4.1 Icon

Figure 29 – The Surface Load (SurfaceL) icon

5.2.4.2 Component

Figure 30 – The Surface Load (SurfaceL) component

5.2.4.3 Description

Loading applied to a meshable surface structure.

5.2.4.4 Summary

The SurfaceL component is used as input into a Load Case. It accepts a Surface Structure

(SurfStruct) and either a either a force in kN per unit area (DistF) or a total force in kN (TotF) to

define the magnitude of the load imparted. The output is a Surface Load (SurfaceL).

For an example of a Peregrine problem containing a surface load, run the Structure_SurfStruct.gh

file.

5.2.4.5 Input / Output

Input / Output Description Default Value

SurfStruct (in)

A surface structure described by a mesh and having

properties used in structural analysis. An object on to

which loads are applied or to use as support.

N/A

DistF (in) Force per unit area of surface (kN/document area unit). 0.0

5 - Component Reference

25

TotF (in)
Total force (kN) applied over the surface (distributed

evenly).
0.0

LineL (out) Loading applied to a meshable surface structure. N/A

5.2.5 Distributed Load (DistL)

5.2.5.1 Icon

Figure 31 – The Distributed Load (DistL) icon

5.2.5.2 Component

Figure 32 – The Distributed Load (DistL) component

5.2.5.3 Description

Define a distributed load (for use with Grillages).

5.2.5.4 Summary

The DistL component divides a given pressure between the nodes that are generated for a

given 2D domain. It accepts a Mesh as the definition of the area over which to apply the loading

and a total magnitude (Mag) as the pressure in kN per unit area. The output is a loaded area

(DistL) that can be used as input for a Load Case.

Note - in order to properly function, the input Mesh must correspond exactly to a mesh that is

used to define a 2D domain within the problem.

For an example of a Peregrine problem containing a distributed load, run the

Grillage_DistributedLoad.gh file. Note that analysis of problems involving Grillages requires a

Professional license.

5 - Component Reference

26

5.2.5.5 Input / Output

Input / Output Description Default Value

Mesh (in)

A mesh defining the region over which the load is applied.

Note that this must match an existing mesh in the Design

Domain

N/A

Mag (in) The load to apply over the mesh (kN/document area unit) 0.0

DistL (out) Define a distributed load (for use with Grillages). N/A

5.2.6 Mirror

5.2.6.1 Icon

Figure 33 – The Mirror icon

5.2.6.2 Component

Figure 34 – The Mirror component

5.2.6.3 Description

Mirror point or line loads.

5.2.6.4 Summary

The mirror component is used to set the load mirroring behaviour when a mirror plane has

been defined in the Problem Specification. See section 6.1.4 for more detail.

5 - Component Reference

27

For an example of a Peregrine problem containing a mirror, run the Structures_L_Truss.gh file.

5.2.6.5 Input / Output

Input / Output Description Default Value

Mirror Type (in)

Sets the behaviour of the load in the presence of a mirror

plane:

• Default: the load is applied only to one side of the

design domain (but the solution is symmetrical)

• Symmetric: the load is applied simultaneously on

both sides of the mirroring plane, with the

direction of the load reflected

• Antisymmetric: the load is applied simultaneously

on both sides of the mirroring plane

Default

Mirror (out) Behavior of a point or line load if a mirror plane is defined. N/A

5.3 Supports

5.3.1 Supports (Supports)

5.3.1.1 Icon

Figure 35 – The Supports icon

5.3.1.2 Component

Figure 36 – The Supports component

5.3.1.3 Description

A set of one or more Support definitions.

5 - Component Reference

28

5.3.1.4 Summary

The Supports component accepts one or more support objects (PointS, PlaneS, DirectionalS or

ObjectS), combines them and outputs them as Supports that can then be used as input into the

Design Domain (Domain).

Refer to the individual support type descriptions for example files.

5.3.1.5 Input / Output

Input / Output Description Default Value

PointS (in)
Restrict translation at specified point(s) in one or more

Cartesian directions.
N/A

PlaneS (in) Provide support across a planar surface or face. N/A

DirectS (in)
Restrict translation at specified point(s) along a specified

vector.
N/A

ObjectS (in) Support provided by a specified object N/A

Supports (out) A set of one or more Support definitions. N/A

5.3.2 Point Support (PointS)

5.3.2.1 Icon

Figure 37 – The Point Support (PointS) icon

5.3.2.2 Component

Figure 38 – The Point Support (PointS) component

5 - Component Reference

29

5.3.2.3 Description

Restrict translation at specified point(s) in one or more Cartesian directions.

5.3.2.4 Summary

The PointS component is used as input into Supports. It accepts a Construct Point (Pt) for its

position and a toggle (Boolean operator) to specify whether support is provided at the location

in the X, Y or Z direction. By default, all three directions are provided with support (True), thus

the user only need add extra controls if they wish to allow freedom of movement in one of the

directions. The output is a Point Support (PointS).

For an example of a Peregrine problem containing a line load, run the Simple2D.gh file.

5.3.2.5 Input / Output

Input / Output Description Default Value

Pos (in)
A location in Cartesian space, defined using a Construct

Point
N/A

XSup (in) Provide restraint against movement in the X direction. True

YSup (in) Provide restraint against movement in the Y direction. True

ZSup (in) Provide restraint against movement in the Z direction. True

PointS (out)
Restrict translation at specified point(s) in one or more

Cartesian directions.
N/A

5.3.3 Directional Support (DirectionalS)

5.3.3.1 Icon

Figure 39 – The Directional Support (DirectionS) icon

5 - Component Reference

30

5.3.3.2 Component

Figure 40 – The Directional Support (DirectionS) component

5.3.3.3 Description

Restrict translation at specified point(s) along a specified vector.

5.3.3.4 Summary

The DirectionalS component is used to specify support positions with restraint in a particular

direction. It is used as input into the Supports component. It accepts a list of Vertices that

describe the support Positions (Pos) and a similarly sized list of Vectors to describe the Direction

(Dir) afforded to those positions. Using this component, it is possible to e.g. specify support to

the vertices of a pre-defined mesh, in a direction normal to the mesh.

For an example of a Peregrine problem containing a directional support, run the

DirectionalSupport.gh file.

5.3.3.5 Input / Output

Input / Output Description Default Value

Pos (in) Point at which support is to be provided. N/A

Dir (in) Direction along which support is to be provided. N/A

DirectS (out)
Restrict translation at specified point(s) along a specified
vector.

N/A

5.3.4 Plane Support (PlaneS)

5.3.4.1 Icon

Figure 41 – The Plane Support (PlaneS) icon

5 - Component Reference

31

5.3.4.2 Component

Figure 42 – The Plane Support (PlaneS) component

5.3.4.3 Description

Provide support across a planar surface or face.

5.3.4.4 Summary

The PlaneS component is used to specify plane or face support surfaces to be used as input into

Supports. It accepts a Plane (e.g. XY) and a number of options to specify how the nodes on the

surface behave.

The Move (GOMov) input is a Boolean toggle (False by default) to specify whether the nodes

that lie on the surface of the supported plane (i.e. the points of support) are allowed to move

around that plane during any Geometry Optimization stage(s).

The Support Direction(s) (Dir) input is a vector specifying the direction of support at the plane.

The Use Plane Normal Support (UseNorm) input is a Boolean toggle (False by default) to specify

whether support is provided to the plane in the normal (perpendicular) direction.

The output is a Plane Support (PlaneS).

For an example of a Peregrine problem containing a plane support, run the

SolutionViewer_Symmetry1.gh file.

5.3.4.5 Input / Output

Input / Output Description Default Value

Plane (in) Planar surface to which support is to be provided. N/A

GOMov (in)
Allow nodes to move on the plane during Geometry

Optimization.
False

Dir (in) A vector specifying the direction of support at the plane. N/A

5 - Component Reference

32

UseNorm (in)
Specify whether support is provided to the plane in the

normal (perpendicular) direction.
False

PlaneS (out) Provide support across a planar surface or face. N/A

5.3.5 Plane SupportXYZ (PlaneSXYZ)

5.3.5.1 Icon

Figure 43 – The Plane SupportXYZ (PlaneSXYZ) icon

5.3.5.2 Component

Figure 44 – The Plane SupportXYZ (PlaneSXYZ) component

5.3.5.3 Description

Provide support across a planar surface or face.

5.3.5.4 Summary

The PlaneSXYZ component is similar in nature to the PlaneS component. It is used to specify

plane or face support surfaces with restraint in one or more of the {xyz} directions, to be used

as input into Supports. It accepts a Plane and a number of options to specify how the nodes on

the surface behave.

The Move (GOMov) input is a Boolean toggle (False by default) to specify whether the nodes

that lie on the surface of the supported plane (i.e. the points of support) are allowed to move

around that plane during any Geometry Optimization stage(s).

The X, Y and Z inputs are Boolean toggles (True by default) to specify whether restraint is

provided in the direction specified.

5 - Component Reference

33

The output is a Plane Support XYZ (PlaneSXYZ).

For an example of a Peregrine problem containing a Plane XYZ support, run the

ProbSpec_MultipleLoadCases1.gh file.

5.3.5.5 Input / Output

Input / Output Description Default Value

Plane (in) Planar surface to which support is to be provided. N/A

GOMov (in)
Allow nodes to move on the plane during Geometry

Optimization.
False

XSup (in) Provide restraint against movement in the X direction. True

YSup (in) Provide restraint against movement in the Y direction. True

ZSup (in) Provide restraint against movement in the Z direction. True

PlaneS (out) Provide support across a planar surface or face. N/A

5.4 Domains

5.4.1 Design Domain (Domain)

5.4.1.1 Icon

Figure 45 – The Design Domain (Domain) icon

5 - Component Reference

34

5.4.1.2 Component

Figure 46 – The Design Domain (Domain) component

5.4.1.3 Description

Design domain described by a triangulated mesh or lines.

Notes:

• The number of Divisions is limited in Free mode such that only problems that are 200

nodes or fewer are solvable.

• Specification of Grillage domains cases requires a Professional license.

• Specification of Line domain cases requires a Professional license.

• Specification of multiple design domains requires a Professional license.

5.4.1.4 Summary

The Domain component is used to collate the Geometry, Material and Support data for entry into

the Problem Specification (ProbSpec). It is also used to specify the Domain type as either a Truss

or a Grillage.

A Truss comprises an arrangement of triangulated elements in either a 2D or 3D environment

and which works primarily in tension and compression (Figure 47), whereas a Grillage

comprises a series of interconnected elements over a 2D planar surface with a common

structural depth and which works in bending (Figure 48).

5 - Component Reference

35

Figure 47 – A (simple) optimized truss structure

Figure 48 – An example of an optimized grillage structure (supported on four columns)

The Domain Mesh (Mesh) input defines the geometry of the Design Domain. It takes a

triangulated mesh, which can come from a variety of sources. When the Domain type is set to

be a Grillage, the input mesh must be 2D.

Multiple domains can be specified in a problem. These can be of differing types and each can

contain a different material etc. However, all shared geometries between any two domains (i.e.

interfaces) must be entire faces, entire edges or singular points. Partial overlaps, whether in 2D

or 3D, are not permitted (see Figure 49):

5 - Component Reference

36

Figure 49 – Allowable mesh interfacing configurations

The Material (Mat) input accepts a user-defined set of material properties from a Mat

component.

The Depth (Depth) is an input that is only associated with the Grillage type. It specifies the

structural depth of all grillage elements within the Domain. Note that grillages are able to

transmit infinite forces in-plane (i.e. they are assumed to be rigid in-plane).

The Supports input accepts a collection of supports from a Supports component.

The Nodal Division (NodeDiv) input accepts a number and defines the density of nodes assigned

to the problem. To do this,, first a local coordinate system is established:

 A face on the Domain is selected as the base for the local coordinate system. If there are

parallel faces, the largest face that is parallel with some other face is selected. If none of

the faces are parallel, the largest overall face is selected.

 The normal to the selected face is assigned as the local “Z” axis.

 The first edge on the face is assigned as the local “X” direction.

 The local “Y” direction is determined.

Secondly, the bounding box of this face is determined, based on the local coordinate system.

Lastly, the longest edge of the bounding box is divided into the specified number of nodal

divisions to set the nodal spacing for the domain.

Note that many post-processing steps use the NodeDiv setting to determine suitable limits on

e.g. the movement of nodes during geometry optimization. Therefore, a suitable value should

be provided, even if user-defined nodes are being provided for the main optimization.

5 - Component Reference

37

The output is a Domain.

For an example of a Peregrine problem containing a basic Truss domain component, run the

Simple2D.gh file.

For an example of a Peregrine problem containing a basic Grillage domain component, run the

Grillage_SimpleSquareOn8Columns.gh file.

5.4.1.5 Input / Output

Input / Output Description Default Value

Mesh (in)

A triangulated mesh defining the geometry of the Design

Domain. When the Domain type is set to be a Grillage, the

input mesh must be 2D.

N/A

Mat (in) The properties of the material used in this Domain. N/A

Supports (in) A set of one or more support definitions. True

NodeDiv (in)

Defines the density of auto-generated nodes assigned to

the Domain. Selects the largest face of the Domain and

uses the bounding box to set up a regular Cartesian nodal

grid from this.

1

CrossSec (in) Defines cross section properties.

Default CHS / I-

beam component

properties

Domain (out) Design domain described by a triangulated mesh. N/A

5.4.1.6 Cross section types

Note that multiple section types can be supplied to the domain CrossSec input for a single

problem. For example, a domain that uses both catenary and beam materials may use both CHS

and I-Beam members, and so requires both a CHS Cross section and I-Beam cross section to be

input into the domain.

5.4.1.7 Compatibility with post-processing components

Some post-processing functionality is incompatible / has limited compatibility with problems

that include grillages. In most cases the grillage domain itself will simply be omitted from the

post-processing steps. However, the Stabilize component will not work with any problems

containing an active grillage domain.

5 - Component Reference

38

The following table outlines the behaviour experienced for each potential scenario:

Component
Component works on
problem containing grillage
domains?

Component applied to
grillage members?

Create Crossovers Yes Yes

Filter Yes Yes

Geometry Optimization (GO) Yes No

Simplify (all modes) Yes No

Merge Joints Yes No

Reduce Complexity Yes No

Stabilize No N/A

5.4.2 Design Domain 1D (Domain 1D)

5.4.2.1 Icon

Figure 50 – The Design domain 1D (Domain 1D) icon

5.4.2.2 Component

Figure 51 – The Design domain 1D (Domain 1D) component

5 - Component Reference

39

5.4.2.3 Description

Define area(s) of design domain where a 1D (line) element can exist. This is e.g. useful for

specifying the locations of potential columns in a building optimization.

5.4.2.4 Summary

The Design domain 1D (Domain 1D) component is used to define one or more specified areas of

design domain where a 1D (line) element can exist, e.g. it is useful for specifying the locations of

potential columns in a building optimization.

The output is a Design Domain (Domain), which can then form part of the input into the Problem

Specification (ProbSpec) component.

For an example of a Peregrine problem containing a Domain 1D component, run the

Grillage_SimpleSquareOn8Columns.gh file.

5.4.2.5 Input / Output

Input / Output Description Default Value

Line (in) Line(s) defining the geometry of the design Domain. N/A

Mat (in) The properties of the material used in this Domain. True

Supports (in) A set of one or more support definitions. True

NodeDiv (in)

Defines the density of auto-generated nodes assigned to

the Domain. Selects the largest face of the Domain and

uses the bounding box to set up a regular Cartesian nodal

grid from this.

True

CrossSec (in) Defines cross section properties.

Default CHS / I-

beam component

properties

Domain (out) Design domain described by a line. N/A

5 - Component Reference

40

5.4.3 Material (Mat)

5.4.3.1 Icon

Figure 52 – The Material (Mat) icon

5.4.3.2 Component

Figure 53 – The Material (Mat) component

5.4.3.3 Description

The properties of the material used in this Domain.

5.4.3.4 Summary

The Material (Mat) component is used to define material properties for use in a design domain.

These are used by the optimization and analysis algorithms.

The Tension and Compression inputs accept values for the limiting stresses of the material

(MPa), while the Density input accepts a value in kg/m3. Young’s modulus (Young’s) and

Poisson’s ratio (Poisson’s) are elastic material properties that are used in e.g. Euler buckling

5 - Component Reference

41

calculations and post-processing functions, but which do not form part of the “normal” layout

optimization (LO) process.

The Wall Thickness input (WallThick) is a deprecated parameter that has been retained for file

compatibility. Wherever possible, users should ensure this is set to “-1” and use the WTRatio

input to a CHS component instead. A warning will be shown on the Material component when

this is not the case.

Gravity accepts a vector to describe the body force accelerations (m/s2) in the Cartesian

directions. For example, a Vec of (0.0, 0.0, -9.81) applies structural self-weight in the

downwards Z direction.

The Simplify input is a Boolean that tells the Simplify component (if present) whether members

of this material should count towards the complexity metrics when undertaking a

simplification action. By default, this is set to true.

The Self-Weight Model radio buttons indicate the way in which the self-weight of members

comprising of this material will be calculated:

 Lumped: assumes equal distribution of mass between member end points (neglects

bending);

 Catenary: assumes only axial stress only under a combination of axial load and self-

weight (compressive forces lead to arching, tensile lead to sagging). Useful for

modelling cable members;

 Rigid beam: assumes moment resistance at joints (potentially leading to lower volume

structures, but longer computation times); useful in multi-load case problems;

 Pinned beam: assumes NO moment resistance at joints.

Members that use the Catenary model will assume the form of an equally stressed catenary.

This is a shape which is defined by the existence of solely axial stresses under the combined

effects of axial load and self-weight. The equal stress catenary has a curved centerline, forming

a shallow arch when designed to resist compressive forces, or a sagging curvature to resist

tensile forces. The curvature of the centerline depends only on the material's permitted stress

and unit weight, and can therefore be efficiently implemented in the layout optimization (LO)

procedure. In Peregrine, where two limiting stresses are defined in the Mat component

(Compression and Tension), the larger of the two will be assumed and a warning shown to

indicate that this is the case.

Members that use a Beam representation are assumed to be prismatic, with geometry as

outlined by the Cross-section component. The self-weight of these members is applied

uniformly along their length, generating bending moments and shear forces which must be

resisted. The joints between these members may be rigid (Rigid beam), in which case moment

equilibrium is considered. Alternatively, the joints may be set to be pinned (Pinned beam), in

which case the bending moment at the ends of each member will be fixed at zero.

5 - Component Reference

42

For more information, the reader is referred to Fairclough et al., 2018.

The output is a Material (Mat), which is then used as an input for a Design Domain (Domain)

component. Multiple materials using different self-weight models may be supplied to the

Domain, in which case members of both will be considered. Note that if a Lumped or Catenary

material is used, a CHS component should be supplied to the Domain to set the cross section

properties of members that use this material. Conversely, if a Rigid beam or Pinned beam

material is used, an I-Beam component should be supplied. Peregrine will warn on the Domain

component if this has not been done.

For an example of a simple Peregrine problem containing a Material component, run the

Simple2D.gh file.

For an example of a more complex Peregrine problem containing a Material component with

Catenary self-weight, run the Bridge_HalfSpanArray.gh file.

5.4.3.5 Input / Output

Input / Output Description Default Value

Tension (in) Limiting (maximum) tensile stress (MPa). 350.0

Compression (in) Limiting (maximum) compressive stress (MPa). 350.0

Density (in) Material density (kg/m3). 7800.0

Young's (in) Young’s modulus (GPa). 210.0

WallThick (In)

Ratio of wall thickness to member radius (>0.0 to 1.0,

or -1). Note that this input is deprecated and wall

thickness ratio should be set on the CHS Cross-Section

(CHS) component instead. To prevent this input

causing a warning to be shown on the component, set

the value to -1.

-1

Poisson's (In) Poisson's ratio. 0.3

Gravity (in)

Body force acceleration (m/s2) in the Cartesian

directions. For example (0, 0, -9.81) applies structural

self-weight in the downwards Z direction.

(0.0, 0.0, 0.0)

Simplify (in)

Boolean to specify whether members of this material

should be considered as contributing to structural

complexity when undertaking a Simplify action.

True

5 - Component Reference

43

Self-Weight Model (in)

Radio buttons indicating the way in which the self-

weight of members comprising of this material will be

calculated (lumped, catenary, pinned beam or rigid

beam).

Lumped

Mat (out) The properties of the material used in this Domain. N/A

5.4.4 CHS Cross-Section (CHS)

5.4.4.1 Icon

Figure 54 – The CHS Cross-Section (CHS) icon

5.4.4.2 Component

Figure 55 – The CHS Cross-Section (CHS) component

5.4.4.3 Description

Defines cross-section properties for circular hollow sections (CHS).

5.4.4.4 Summary

The CHS Cross-Section (CHS) component is used to define the properties of all CHS members

used in the design domain to which it is supplied.

Wall Thickness Ratio (WTRatio) specifies the ratio of wall thickness to the outer member radius.

Note that the magnitude of the WTRatio parameter allows users to specify whether e.g. the

members are CHS or CSS as well as influencing Euler buckling calculations.

For an example of a Peregrine problem containing a CHS component, run the

Structures_L_Truss.gh file.

5.4.4.5 Input / Output

Input / Output Description Default Value

5 - Component Reference

44

WTRatio (in)

Ratio of wall thickness to member radius (0.0 < value <

1.0). Default = 1.0. Note that assigning a value of 1.0

will set the section to be solid.

1.0

CrossSec (Out) CHS Cross section for input into a Domain component. N/A

5.4.5 I-Beam Cross-Section (IBeam)

5.4.5.1 Icon

Figure 56 – The I-Beam Cross-Section (IBeam) icon

5.4.5.2 Component

Figure 57 – The I-Beam (IBeam) component

5.4.5.3 Description

Defines cross-section properties for I-beams.

5.4.5.4 Summary

The I-Beam Cross-Section (IBeam) component is used to define the properties of all I-beam

members used in the design domain to which it is supplied. An I-beam member is specified by

three constants and two variable areas, one at each endpoint.

The depth, flange thickness, and web thickness, shown (see Figure 58), are constant for all I-

beam member cross-sections of a given domain, and it is these which are defined by the IBeam

component. Figure 59 shows a plan view of an arbitrary grillage member.

The beam web is considered to have zero area, such that the area of a member at some point

along its length is controlled entirely by the flange width at that point, which varies linearly

between the values at each endpoint. These endpoint widths are found from the

corresponding areas determined by the solver.

5 - Component Reference

45

Figure 58 – Cross section of an I-Beam member

Figure 59 – I-Beam plan view

For an example of a Peregrine problem containing an IBeam component, run the

Building_Commercial_Residential_Tower.gh file.

5.4.5.5 Input / Output

Input / Output Description Default Value

Depth (in)

The structural depth of all beam elements within the

Domain, measured between the neutral axes of the

two flanges. Note that grillages are able to transmit

infinite forces in-plane (i.e. they are assumed to be

rigid in-plane).

5.0

FDRatio (in) Ratio of flange thickness to I-beam depth. 0.1

WFRatio (in) I-beam web : flange thickness ratio. 0.625

5 - Component Reference

46

CrossSec (Out)
I-Beam cross section for input into a Domain

component.
N/A

5.5 Solve

5.5.1 Problem Specification (ProbSpec)

5.5.1.1 Icon

Figure 60 – The Problem Specification (ProbSpec) icon

5.5.1.2 Component

Figure 61 – The Problem Specification (ProbSpec) component

5.5.1.3 Description

A combination of one or more Domains and Load Cases for input into a Layout Optimization

(LO).

5.5.1.4 Summary

The Problem Specification (ProbSpec) component combines one or more Domain(s) and the

applied Loading for input into the Layout Optimization component. The Units of the problem are

also input here. The output is a Problem (ProbSpec), the Units of the problem, and a list of the

materials in the problem together with their properties.

For an example of a Peregrine problem containing the ProbSpec component, run the

Simple2D.gh file.

5 - Component Reference

47

Note:

• Use of the Euler buckling (PP) functionality requires a Standard or Professional license

5.5.1.5 Input / Output

Input / Output Description Default Value

Domain (in) Design domain(s). N/A

LCase (in)
A load or group of loads to be applied to the structure as

an independent case.
N/A

Units (in)

Defines the units of length used for geometrical measures

defined in Grasshopper. If nothing is specified, the Rhino

units of length are assumed by default.

Permissible values: mm, cm, m, km, in, ft

Note that other units used by Peregrine and

incorporating length (allowable stress, pressure etc.) are

not modified when changing this input and may need to

be updated manually.

mm

EulerPP (in)

Consider Euler buckling as part of post processing stages.

Note that this differs to Euler buckling when considered

as part of the layout optimization stage.

False

Effective Length (in)
Multiplier on the length of the member required to cause

it to buckle as ‘pinned – pinned’.
1.0

Settings (in) General settings applied in this problem. N/A

Mirror Plane (in)

Defines the plane at which mirror symmetry is applied.

Note that the surface normal vector must be set such that

the defined supports and loading lie on the plane or to the

rear (inward). See section 6.1.4 for more details.

N/A

ProbSpec (out) Problem specification for use in LO or ConstructTopology. N/A

Units (out) Units used in Grasshopper. N/A

Materials (out) Permitted materials in each domain. N/A

5 - Component Reference

48

5.5.2 Layout Optimization (LO)

5.5.2.1 Icon

Figure 62 – The Layout Optimization icon

5.5.2.2 Component

Figure 63 – The Layout Optimization component

5.5.2.3 Description

Solve layout optimization problem (see Section 6.1.1).

5.5.2.4 Summary

The Layout Optimization component takes the problem input, conducts an optimization and

presents the output in a number of formats.

Optimization is toggled on or off using the Enable function. When enabled, the Layout

Optimization takes the Problem Specification (ProbSpec) and performs a linear programming

layout optimization on it (see Section 6.1.1 for more details).

While the nodal discretization within the problem is generally defined as part of setting up the

Design Domain, one can override this in the Layout Optimization by providing a list of nodes at

specific positions via the User Nodes (UserNodes) input. For an example of a Peregrine problem

containing User Nodes, run the LO_UserNodes.gh file.

By specifying a Joint Cost (JointCost), the solver will add a penalty to elements in the optimum

layout (in the form of a fictional additional length). This may in some cases help to generate

simpler layouts with reduced complexity (as fewer elements mean a lower total penalization).

However, the volume will be increased as a result. By specifying a number of Joint Costs as

input, a number of different solutions can be found. More about Joint Costs in the layout

5 - Component Reference

49

optimization formulation is provided in Section 6.1.3. For an example of a Peregrine problem

containing Joint Costs, run the LO_JointCost.gh file.

The output from the Layout Optimization component relates to the problem and optimum

Solution (Sol):

With Euler buckling layout optimization (EulerLO) enabled, the solver will attempt to ensure

stability against Euler buckling as part of the optimization process. Note that this requires an

appropriate Effective Length to be specified in the Problem Specification (ProbSpec). The process

makes use of a heuristic approach and, as such, is not guaranteed to be successful in all

situations.

Note:

• Use of the Euler buckling (LO) functionality requires a Standard or Professional license

An example comparing Euler buckling as post-process and in-optimization steps is provided in

the Euler_buckling.gh file.

The Volume (Vol) output supplies the volume (mm3) of the optimum structure at the end of the

optimization stage.

The Topology output delivers a representation of the optimum structure as line elements.

The Solution (Sol) output packages together all the required data relating to the optimization

problem and optimal, least volume, structure in a form that can be used as input into the post

processing stages or displayed within the Rhino environment.

The Solution Log (Log) output can be connected to e.g. a Panel in order to display information

relating to the Layout Optimization iterations (Iteration Number, Nodes, Members and

Volume).

For an example of a Peregrine problem containing a Layout Optimization component, run the

Simple2D.gh file.

5.5.2.5 Input / Output

Input / Output Description Default Value

Enable (in) Enable this component. False

ProbSpec (in)
A combination of one or more Domain(s) and Load

Case(s) for input into the Layout Optimization (LO).
N/A

UserNodes (in)
A set of user-defined nodal positions to use as potential

member end points during optimization. Note that the
N/A

5 - Component Reference

50

NodeDiv input for Domain and Domain1D will not be used

for the purposes of structural layout, but may still be used

when calculating other analysis parameters (e.g.

tolerances).

JointCost (in)
A Boolean to specify whether the point is restrained

against movement in the Z direction object.
0.0

EulerLO (in)

Consider Euler buckling as part of the layout optimization.

Slender members will be identified and suppressed during

optimization, rather than as a post-process step.

False

PreviewNd (out)
Preview the nodes that are used in the layout

optimization.
N/A

Vol (out) Volume of the solution structure. N/A

Lines (out) The optimum structure represented by line elements. N/A

SolData (out) Optimization solution data. N/A

Log (out) Solution log. N/A

Figure 64 – The Simple2D problem in Rhino. Nodes previewed in green

5 - Component Reference

51

5.6 Post Process

5.6.1 Geometry Optimization (GO)

5.6.1.1 Icon

Figure 65 – The Geometry Optimization (GO) icon

5.6.1.2 Component

Figure 66 – The Geometry Optimization (GO) component

5.6.1.3 Description

Undertakes a Geometry Optimization (see Section 6.1.2).

5.6.1.4 Summary

The Geometry Optimization (GO) component undertakes a geometry optimization on the

output from a previous optimization or simplify operation (Sol) by moving the positions of

joints to more favorable positions (i.e. positions that will lead to a lower structural volume). As

part of this process, the structure may be automatically converted from a pin-jointed

representation (no moment resistance at joints) to a frame representation (moment resistance

at joints). See (He, L et al., 2018) for the background theory and (Fairclough et al., 2021) for a

discussion of the heuristics involved in the algorithm.

The Maximum Number of Input Nodes Allowed (Limit) is an integer describing the upper limit on

the number of nodes that are allowed in a structure that is to undergo Geometry Optimization.

If the input Solution (Sol) contains more nodes than this value, a warning will be shown. By

default, the limit is set to 100.

The Maximum Number of Iterations (Iter) is an integer that sets the number of geometry

optimization iterations that are allowed to take place before the solution is returned. If

convergence occurs before this value is hit, the geometry optimization will be curtailed. By

default, the limit is set to 5.

5 - Component Reference

52

The Volume (Vol) is a measure of the volume of the structure post-geometry-optimization.

The Solution (Sol) output packages together all the required data relating to the optimization

problem and optimal structure in a form that can be used as input into further post processing

stages or displayed within the Rhino environment using the SolutionViewer.

The Solution Log (Log) can be connected to e.g. a Panel in order to display information relating

to the LO iterations (Iteration Number, Nodes, Members and Volume).

For an example of a Peregrine problem containing GO component, run the PostProcess_GO.gh

file.

Note that Geometry optimization will not be applied to members that belong to a grillage

domain, see section 5.4.1.6 for details.

5.6.1.5 Input / Output

Input / Output Description Default Value

SolData (in) Optimization solution data. N/A

MaxJoints (in)
The maximum number of joints allowed in the input

structure.
100

MaxIters (in)
The maximum number of geometry optimization

iterations.
5

Vol (out) Volume of the solution structure. True

SolData (out) Geometry optimization solution data. N/A

Log (out) Solution log. N/A

5.6.1.6 Example

An example of the Geometry Optimization process is shown in Figure 67:

5 - Component Reference

53

Figure 67 – The GO component used to reduce the complexity of a solution

5.6.2 Simplify (Simplify)

5.6.2.1 Icon

Figure 68 – The Simplification icon

5.6.2.2 Component

Figure 69 – The Simplify component

5.6.2.3 Description

Reduce the number of members that connect at joints using a variety of smooth Heaviside

functions (see Section 6.1.3 for more information).

5 - Component Reference

54

5.6.2.4 Summary

The Simplify component takes the output (Sol) from an optimization and attempts to reduce

the number of elements that connect at the joints. The algorithm is summarized in the

appendix (see 6.1.3). The background theory is described in more detail in He, L et al., (2018)

and the additional heuristics involved are discussed in Fairclough et al., (2021).

The user specifies a permissible Volume Increase (VolInc%) in the volume of the structure that

can be traded for this reduced complexity. A smooth Heaviside formulation is used to e.g.,

reduce the number of elements, while still possessing a volume that is below the permissible

value.

Additionally, the user may specify the Simplification Mode (Mode) with an integer, used to select

from one of three options that define the method used to simplify the input structure. These

are:

1. All members – seeks to reduce the total number of members in the structure while

keeping the volume within the specified percentage of volume increase (VolInc%)

2. Joint complexity – examines each joint within the optimum structure and attempts to

reduce the number of elements meeting towards the specified value (Num), while

keeping the volume within the specified percentage of volume increase (VolInc%)

3. Most complex joint - examines the most complex joint within the optimum structure and

attempts to reduce the number of elements meeting at it towards the specified value

(Num), while keeping the volume within the specified percentage of volume increase

(VolInc%)

The Target # members (TargetNum) input.

The Volume (Vol) is a measure of the volume of the structure post-simplification.

The Solution (Sol) output packages together all the required data relating to the optimization

problem and optimal structure in a form that can be used as input into further post processing

stages or displayed within the Rhino environment using the Solution Viewer.

The Solution Log (Log) can be connected to e.g. a Panel in order to display information relating

to the LO iterations (Iteration Number, Nodes, Members and Volume).

Note that, if a simplification step is unable to complete, or has no effect on the solution, a

warning message will be given by the component to alert the user to this fact. The output from

the component will be the same as the input (allowing downstream actions to still occur).

Note that simplification will not be applied to members that belong to a grillage domain, see

section 5.4.1.6 for details.

For an example of a Peregrine problem containing a Simplify component, run the

Structures_L_Truss.gh file.

5 - Component Reference

55

5.6.2.5 Input / Output

Input / Output Description Default Value

SolData (in) Optimization solution data. N/A

VolInc% (in)
The volume of the structure (as a %) that can be traded for

reduced complexity.
5

Mode (in)

"The type of simplification to perform:

1) Reduce # members overall

2) Reduce # members at all joints

3) Reduce # members at the most complex joint(s).

In each case, the simplification will try to keep the volume

within the specified allowable increase (VolInc%). In

modes 2 and 3, joint(s) will considered 'complex' if they

contain more than TargetNum converging members.

1

TargetNum (in)

In applicable simplification modes, joint(s) will considered

'complex' if they contain more than TargetNum

converging members.

4

Vol (out) Volume of the solution structure. N/A

SolData (out) Optimization solution data. N/A

Log (out) Solution log. N/A

5.6.2.6 Example

Please note that the Simplify component can sometimes produce truss configurations that are

asymmetrical, despite having a symmetrical problem definition. This can generally be

addressed by passing the output through a Geometry Optimization (GO) component and

increasing the Iteration (Iter) count as necessary. For an example of a problem containing a

Simplify component, see the PostProcess_SimplificationJointComplexity.gh file.

5.6.2.7 Example

An example of the Simplify process is shown in Figure 70:

5 - Component Reference

56

Figure 70 – Simplification of a truss structure

5.6.3 Crossovers (Crossovers)

5.6.3.1 Icon

Figure 71 – The Crossovers icon

5.6.3.2 Component

Figure 72 – The Crossovers component

5.6.3.3 Description

Create joints at locations where elements cross, or come close to crossing.

5 - Component Reference

57

5.6.3.4 Summary

Occasionally, generally as a result of geometry optimization, elements can be found that

overlap, but do not have a node at the overlap location. The Crossovers (Crossover) component

takes the output (Sol) from an optimization and introduces nodes where these elements cross

each other.

The user specifies a permissible Volume Increase Limit (Limit) (default of 100%). Above this

value, the crossovers will not be generated.

The Crossover Distance Ratio (Dist) is a measure of the proximity of members below which a

crossover will be created. The longest diagonal of the model bounding box is determined and

the ratio value is the percentage of this measure which is used as the “search area” for

crossovers. For example, in a 3D model with a 100mm bounding box, a value of “Dist=1” will

ensure that elements with center lines that pass within 1mm of each other are checked and a

crossover node added if required.

The Enable input is connected to a toggle, to allow the selective enabling and disabling of this

component functionality. If changes are to be made to the Limit or Dist inputs, it is

recommended that the component is left disabled while this is done.

The Volume (Vol) is a measure of the volume of the structure post-modification.

The Solution (Sol) output packages together all the required data relating to the optimization

problem and optimal structure in a form that can be used as input into further post processing

stages or displayed within the Rhino environment using the SolutionViewer. It is generally

recommended that a GO step is undertaken after crossovers are created.

The Volume Increase (Increase) output is a measure of the increase in structural volume

encountered as a result of the crossovers functionality being undertaken.

The Solution Log (Log) can be connected to e.g. a Panel in order to display information relating

to the component actions.

For an example of a Peregrine problem containing the Crossovers component, run the

PostProcess_Crossover.gh file.

Note that Crossovers component is able to create crossovers between members that belong to

a grillage domain, see section 5.4.1.6 for details.

5.6.3.5 Example

An example of the Crossovers process is shown in Figure 73:

5 - Component Reference

58

Figure 73 – An example of the output of the crossovers functionality

Here, the leftmost solution is the result of a normal LO step. Crossovers are created in the

center image (note that the volume remains unchanged) and the resulting structure passed to

the GO component, which moves joints to more optimal positions.

5.6.3.6 Input / Output

Input / Output Description Default Value

Enable (in) Enable this component. False

SolData (in) Optimization solution data. N/A

Limit (in)

Limit in solution volume percentage increase. Above this

value, the solution offered by this component will be

rejected.

100.0

Dist (in)

Measure of the proximity of members, below which a

crossover will be created. The longest diagonal of the

model bounding box is determined and the proximity is

the percentage of this measure which is used as the

“search area” for crossovers.

1

Vol (out) Volume of the solution structure. N/A

SolData (out) Optimization solution data. N/A

Increase (out Volume increase (%). N/A

5 - Component Reference

59

Log (out) Solution log. N/A

5.6.4 Filter (Filter)

5.6.4.1 Icon

Figure 74 – The Filter icon

5.6.4.2 Component

Figure 75 – The Filter component

5.6.4.3 Description

Removes the elements with a cross-sectional area below a specified Filter Threshold %. Note

that this process may reposition joints to restore equilibrium.

5.6.4.4 Summary

The Filter functionality takes a Solution (Sol) from an optimization or post-process step and

removes the elements with a cross-sectional area below a specified Filter Threshold %

(Threshold).

The value of the Threshold is a user-specified percentage of the cross-sectional area of the

largest element that exists in the solution. The component will attempt to remove elements

with cross-sections below that which this relates to.

By removing elements, the equilibrium of forces at nodes will naturally be compromised to

some extent. The Filter function will therefore attempt to also restore equilibrium where

necessary, using a geometry optimization step.

The Volume Increase Limit (Limit) is the percentage increase in structural volume that is allowed

to occur as a result of the Filter functionality. By default, the limit is set to 100.0.

5 - Component Reference

60

The Enable input is connected to a toggle, to allow the selective enabling and disabling of this

component functionality. If changes are to be made to the Limit or Threshold inputs, it is

recommended that the component is left disabled while this is done.

For an example of a Peregrine problem containing Filter component, run the

PostProcess_Filter.gh file.

Note that the filter component is able to act on members in grillage domains, see section

5.4.1.6 for details.

5.6.4.5 Input / Output

Input / Output Description Default Value

Enable (in) Enable this component. False

SolData (in) Optimization solution data. N/A

Limit (in)

Limit in solution volume percentage increase. Above this

value, the solution offered by this component will be

rejected.

100.0

Threshold (in)

A percentage of the cross-sectional area of the largest

element that exists in the solution. Members with areas

below this will be removed where possible.

5

Vol (out) Volume of the solution structure. N/A

SolData (out) Optimization solution data. N/A

Increase (out Volume increase (%). N/A

Log (out) Solution log. N/A

5.6.4.6 Example

An example of the results of a Filter stage is shown in Figure 76:

5 - Component Reference

61

Figure 76 – Filtering the output from Layout Optimization stage (L = original, R = filtered)

On the right is the original solution. On the left is a filtered version, where a filter Threshold of

3% has been specified and a Geometry Optimization stage carried out after the filter. It can be

seen that the resulting structure is both simpler and lower in volume.

5.6.5 Merge Joints (Merge)

5.6.5.1 Icon

Figure 77 – The Merge Joints icon

5.6.5.2 Component

Figure 78 – The Merge Joints component

5.6.5.3 Description

Merge joints within the structure that lie within a prescribed distance of each other.

5 - Component Reference

62

5.6.5.4 Summary

The Merge Joints (Merge) functionality accepts a Solution (Sol) from an optimization or post-

process step and combines nodes (joints) within the structure that lie within a prescribed

Merge Radius Ratio (Radius).

The value of the Radius (default = 5) is a measure of the proximity of nodes, below which a

merge will be attempted. The longest diagonal of the model bounding box is determined and

the ratio value is the percentage of this measure which is used as the “search area”. For

example, in a model with a 100mm bounding box, a value of “Radius = 5” will ensure that nodes

which lie within 5mm of each other are checked and an attempt made to merge them.

By removing nodes and elements, the equilibrium of forces may be compromised to some

extent. The Merge function will therefore attempt to also restore equilibrium where necessary,

using a supplementary geometry optimization step.

The Volume Increase Limit (Limit) is the percentage increase in structural volume that is allowed

to occur as a result of the Filter functionality. By default, the limit is set to 100.0.

The Enable input is connected to a toggle, to allow the selective enabling and disabling of this

component functionality. If changes are to be made to the Limit or Radius inputs, it is

recommended that the component is left disabled while this is done.

For an example of a Peregrine problem containing Merge component, run the

PostProcess_MergeNodes.gh file.

Note that nodes that belong to a grillage domain will not be merged, see section 5.4.1.6 for

details.

5.6.5.5 Input / Output

Input / Output Description Default Value

Enable (in) Enable this component. False

SolData (in) Optimization solution data. N/A

Limit (in)

Limit in solution volume percentage increase. Above this

value, the solution offered by this component will be

rejected.

100.0

Radius (in)

The distance between joints, below which a merge will be

attempted. The longest diagonal of the model bounding

box is determined and the Merge Radius is the percentage

of this measure to be used as the “search area”.

5.0

5 - Component Reference

63

Vol (out) Volume of the solution structure. N/A

SolData (out) Optimization solution data. N/A

Increase (out Volume increase (%). N/A

Log (out) Solution log. N/A

5.6.5.6 Example

An example of the results of a Merge stage is shown in Figure 79:

Figure 79 – A node Merge (L = original solution, R = node merge)

5.6.6 Reduce Complexity (Complexity)

5.6.6.1 Icon

Figure 80 – The Reduce Complexity icon

5 - Component Reference

64

5.6.6.2 Component

Figure 81 – The Reduce Complexity component

5.6.6.3 Description

Attempts to reduce the number of members according to a specified directive on the method

used and within an allowable increase in structural volume.

Note:

• This feature is now deprecated. Please use the Simplify component instead (see Section

5.6.2).

5.6.6.4 Summary

The Reduce Complexity (Complexity) component accepts a Solution (Sol) from an optimization

or post-process step and attempts to reduce the number of elements according to a user-

specified directive on the method used, plus an allowable increase in structural volume.

Note that in general the Simplify component, which is based on a different numerical approach,

is likely to produce superior results and is therefore recommended for most situations.

The value of the Maximum number of members at joint (BarsAtJoint) (default = 8) defines the

greatest number of members that can join at any one location (joint). The Complexity

functionality will then attempt to identify the minimum volume structure that conforms to this

requirement. By removing nodes and elements, the equilibrium of forces may be compromised

to some extent. The Complexity function will therefore attempt to also restore equilibrium

where necessary, using a supplementary geometry optimization step.

The Volume Increase Limit (Limit) is the percentage increase in structural volume that is allowed

to occur as a result of the operation of the Complexity functionality. By default, the limit is set

to 100.0.

The Enable input is connected to a toggle, to allow the selective enabling and disabling of this

component functionality. If changes are to be made to the MaxBars. or BarsAtJoint inputs, it is

recommended that the component is left disabled while this is done.

The output is a new optimal Solution (Sol) along with data relating to its generation.

5 - Component Reference

65

For an example of a Peregrine problem containing the Complexity component, run the

PostProcess_Complexity.gh file.

Note that members that belong to a grillage domain will not be modified, see section 5.4.1.6 for

details.

5.6.6.5 Input / Output

Input / Output Description Default Value

Enable (in) Enable this component. False

SolData (in) Optimization solution data. N/A

Limit (in)

Limit in solution volume percentage increase. Above this

value, the solution offered by this component will be

rejected.

100.0

MaxMembs (in)
Maximum number of members in the optimum

structure.
100.0

JointMembs (in) Maximum number of members that can meet at a joint. 8

Vol (out) Volume of the solution structure. N/A

SolData (out) Optimization solution data. N/A

Increase (out Volume increase (%). N/A

Log (out) Solution log. N/A

5.6.6.6 Example

An example of the results of a Reduce Complexity stage is shown in Figure 82.

On the right is the original solution. On the left is a modified version, where a complexity

threshold of 6 members per node has been specified and a GO stage carried out after the filter.

It can be seen that the resulting structure is simpler but has a comparable volume.

5 - Component Reference

66

Figure 82 – Reducing the complexity of the solution (left = original, right = refined)

5.6.7 Stabilize (Stabilize)

5.6.7.1 Icon

Figure 83 – The Stabilize icon

5.6.7.2 Component

Figure 84 – The Stabilize component

5 - Component Reference

67

5.6.7.3 Description

Takes a solution or constructed topology and attempts to ensure that the structure is linearly

stable under the specified loads. Note that this step should generally be the last in the

optimization workflow, as other components may introduce a state of unstable equilibrium

once more.

Note:

• Use of the Stabilize component requires a Professional license.

5.6.7.4 Summary

The Stabilize (Stabilize) component accepts a Solution (Sol) from an optimization, constructed

topology or post-process step and, using a semi-definite programming approach, attempts to

ensure that the structure is linearly stable under the specified loads.

If the calculated load factor is less than a user-specified target value (Load factor, default value

= 1), corresponding buckling modes will be analyzed to identify the most critical members.

These members will then be re-sized or additional elements and previously eliminated support

points added, to suppress buckling modes.

The Termination gap (TermGap) input is a measure on the percentage error. When the

stabilization routine gets to (or below) this value, it will be allowed to terminate. A default of

zero (no difference between completely stabilized structure and current solution) is used, but a

higher magnitude could be allocated and therefore result in a faster calculation.

Enabling the Add Supports (AddSupports) input allows the stabilization routine to once again

consider areas of the geometry that were specified as supports, but that were not ‘active’ in the

previous optimal solution. These may provide restraint for subsequently added stabilizing

elements.

Note that this step should generally be the last in the optimization workflow, as other

components may introduce a state of unstable equilibrium once more, thus negating the effect

of the stabilization.

As the calculations involved in ensuring stability may require a reasonable amount of

computational effort, the value of Limit (default = 50) is used to act as a threshold on the

maximum solution size that the component will accept. If the number of nodes in the problem

(note, not the number of joints in the structure) that is passed to the component exceeds the

allocated value, a warning is issued (“Layout contains too many nodes that may lead to slow

progress, please increase node limit”) and the stabilization is not undertaken. The user can choose

to increase the value as necessary, on the understanding that this will require more resources.

The output is a new optimal Solution (Sol) along with data relating to its generation.

5 - Component Reference

68

For an example of a Peregrine problem containing the Stabilize component, run the

PostProcess_GlobalStability.gh file.

Note that the Stabilize functionality is incompatible with problems that contain a grillage

domain, see section 5.4.1.6 for details.

5.6.7.5 Input / Output

Input / Output Description Default Value

SolData (in) Optimization solution data. N/A

MaxJoints (in)

Maximum number of joints that can exist in the input

structure. Use to suppress stabilization of very

complex structures, which may require longer

solution times.

50

LoadFactor (in)

If the calculated stability load factor is lower than

this value, stabilization measures are attempted

(adding members or increasing the cross-section of

existing parts).

1.0

TermGap (in)

A measure on the percentage error of the solution.

When the stabilization routine gets to (or below) this

value, it will be allowed to terminate.

5.0

AddSupports (in)

Allows the stabilization routine to consider areas of

the geometry that were specified as supports, but

that were not ‘active’ in the previous optimal

solution. These may provide restraint for

subsequently added stabilizing elements.

True

Vol (out) Volume of the solution structure. N/A

SolData (out) Optimization solution data. N/A

Log (out) Solution log. N/A

5 - Component Reference

69

5.7 View

5.7.1 Gallery Settings (Gallery)

5.7.1.1 Icon

Figure 85 - The Gallery Settings (Gallery) icon

5.7.1.2 Component

Figure 86 – The Gallery Settings (Gallery) component

5.7.1.3 Description

Settings for controlling the display of solutions as a gallery.

5.7.1.4 Summary

The Gallery component is used to control the display of multiple solutions in the View Solution

(View) component. It accepts a Reference Volume (RefVol), against which the optimized volumes

can be compared. By default, this volume is set to zero and no comparison is undertaken. The

Gallery output contains the display settings to be used in the View Solution.

For an example of a Peregrine problem containing the Gallery component, run the

LO_JointCost.gh file.

5 - Component Reference

70

5.7.1.5 Input / Output

Input / Output Description Default Value

RefVol (in)
Reference volume to compare solutions against (using

document units).
0.0

SrtVol (in)

Higher numbers mean that volume is weighted higher

when sorting solutions in the gallery. SrtVol and

SrtComplex must both be above 1 to have an effect.

0.0

SrtComplex (in)

Higher numbers mean that structural complexity is

weighted higher when sorting solutions in the gallery.

SrtVol and SrtComplex must both be above 1 to have an

effect.

0.0

MaxCols (in)
Max number of columns of solutions displayed in the

gallery.
3

BREPs (in) Display solutions as BREPs. True

ViewPlane (in)

Select a view plane:

(0) XY plane

(1) XZ plane

(2) YZ plane

0 (XY)

Gap (in) Adjusts the gap between solutions. 1.5

Text (in) Adjusts the scale of the caption text in the gallery. 1.0

NumLabels (in)
Set the number of solver output labels to display as

captions under each solution.
2

Gallery (out)
Settings for controlling the display of solutions as a

gallery.
N/A

5.7.1.6 Example

An example of the Gallery output is presented in Figure 87:

5 - Component Reference

71

Figure 87 – An Example of Gallery output

5.7.2 Solution Details (Details)

5.7.2.1 Icon

Figure 88 – The Solution Details icon

5.7.2.2 Component

Figure 89 – The Solution Details (Details) component

5 - Component Reference

72

5.7.2.3 Description

Outputs a range of information relating to the optimum structure for the specified Load Case.

Accepts a Solution (SolData) from an optimization or post-process step and an integer

specifying the Load Case.

5.7.2.4 Summary

The Solution Details (Details) component accepts a Solution (Sol) from an optimization or post-

process step and an integer representing the Load Case that the user wishes to determine the

details for.

The output from the component comprises a range of information relating to the optimum

structure for the specified Load Case.

Output from this component may be used to generate a single shell representation of the

structure using the Grasshopper MultiPipe component (with Rhino version 7.2 or later).

5.7.2.5 Input / Output

Input / Output Description Default Value

SolData (in) Optimization solution data. N/A

LCase (in)
A load or group of loads to be applied to the structure as

an independent case.
N/A

JointOffset (in)

Optionally include additional joints along members, each

offset as a fraction of the member length from the

member endpoints. If 0.0 then no additional joints are

added. (Added to support compatibility with the

MultiPipe component).

0.0

DimsType (in)

Member radius returned:

1: Outer radius (solid section or CHS)

2: Mid-surface radius (CHS)

3: Inner radius (CHS)

1

Vol (out) Volume of the structure. N/A

Lines (out) The optimum structure represented by line elements. N/A

Joints (out)
A list of coordinates describing the location of joints in the

optimum structure.
N/A

5 - Component Reference

73

BREPs (out) The optimum structure represented by BREPs. N/A

Areas (out)
A list of member cross-sectional areas (using document

unit).
N/A

Forces (out) A list of member axial forces (tension positive). N/A

LineDims (out)
A list of key member radii of type determined by the

DimsType input (using document unit).
N/A

JointDims (out)
The radius of the largest member connected to a given

joint (using document unit).
N/A

Material (out)

Outputs, for each member, a grasshopper path structure

indicating the index of the domain and material in the

format: { Domain index, Material Index}.

N/A

5.7.2.6 Use with the Grasshopper MultiPipe component

An alternative to the Solution Viewer is to use the Grasshopper MultiPipe component, available

in Rhino 7.2 or later, which generates a single shell representation of the structure, with

smooth transitions between members at joints.

The MultiPipe component receives a set of curves as an input, with each curve being used to

generate a member. Nodes are generated at points where two or more curves meet, and each

node is assigned a radius that matches that of the closest point in a list of points passed via the

SizePoints input. The radius of a pipe generated between nodes will smoothly transition

between the radii of those nodes. The radius of each point in SizePoints is specified by the

values in the NodeSize input.

When the Solution Details component is used with the MultiPipe component, the central

portions of members can be sized correctly if intermediate joints (nodes) are created at

positions:

𝛼𝐿

1 − 𝛼𝐿

Where the member length is 𝐿 and 𝛼 is the offset from each endpoint as a fraction of the length

of the member, specified by the JointOffset input of Solution Details. Note the following cases:

1. (0 < 𝛼 < 0.5)

Each member is split at two intermediate locations. The surface segment generated

between the two new joints created will be nominally circular, with a radius that

corresponds to that of the member in the Peregrine solution. The surface will smoothly

transition from the original joints (which may have a larger radius) to the new joints.

5 - Component Reference

74

2. (𝛼 = 0.5)

Each member is split at its midpoint. The surface will smoothly transition from the

original joints (which may have a larger radius) to the new midpoint joint.

3. (𝛼 = 0)

Members are not split and no additional joints are created. This is the default value for

JointOffset. This setting should not be used with MultiPipe as the members will not be

sized correctly.

Before connecting the Solution Details (Details) component with MultiPipe, first specify a

suitable JointOffset in the Solution Details component. Then connect the Lines, Joints, and

JointDims outputs of Solution Details to the Curves, SizePoints, and NodeSize inputs of the

MultiPipe component respectively. The EndOffset input of the MultiPipe component should

typically be as small as possible but nonzero, but may be increased if the user finds that some

pipes are bending too sharply at joints.

It is also possible to generate a hollow pipe structure using the MultiPipe component, by

creating two MultiPipe structures using the inner and outer CHS radii of the members,

converting these to watertight meshes and then subtracting the smaller mesh from the larger

one. For an example of a Peregrine problem that is used to generate a MultiPipe structure, run

the HalfWheelMultipipe.gh file.

5.7.3 View Solution (View)

5.7.3.1 Icon

Figure 90 – The View Solution icon

5.7.3.2 Component

Figure 91 – The View Solution component

5.7.3.3 Description

Display the optimum structure(s) within the Rhino environment. The output can also be passed

to other components for further processing.

5 - Component Reference

75

5.7.3.4 Summary

The View Solution component accepts a Solution (Sol) from an optimization or post-process

step, an optional ID (to highlight a particular solution) and a set of Gallery parameters which

outline how the solution(s) are displayed in Rhino.

The output from the component can be passed to other components for further processing.

However, the central function of the component is to display the structure(s) within the Rhino

environment.

With respect to the output:

The Volume (Vol) is the volume(s) of the structures passed into the component.

The Bars are a list of the elements in the various layouts, as BREPs.

The Solution (Sol) is data relating to the problem setup and optimum structures.

For an example of a Peregrine problem containing the View Solution component, run the

LO_JointCost.gh file.

5.7.3.5 Input / Output

Input / Output Description Default Value

SolData (in) Optimization solution data. N/A

ID (in) Set the ID of the solution to highlight in the gallery output. 0

Vol (out) Volume of the solution structure. N/A

SolData (out) Optimization solution data. N/A

Log (out) Solution log. N/A

5 - Component Reference

76

5.8 Tools

5.8.1 Settings (Settings)

5.8.1.1 Icon

Figure 92 – The Settings icon

5.8.1.2 Component

Figure 93 – The Settings component

5.8.1.3 Description

Adjust the Settings used in the Problem Specification.

5.8.1.4 Summary

The Settings component provides control over a number of LO solve related settings and

outputs them in a form suitable for input into the ProbSpec component.

Occasionally Peregrine will issue warnings before attempting to solve a problem (e.g. relating

to the solution time, if it is likely to be particularly long). These messages can be suppressed by

setting the IgnoreWarns input to true.

The Preview Nodes (PreviewNd) input can be used to toggle display of the nodes generated by

the Layout Optimisation (LO) component.

For an example of a Peregrine problem containing the Settings, component, run the

LO_UserNodes.gh file

Note that, for files generated prior to Peregrine v5.0, the default AutoNodes setting may cause

solutions to differ from the original. To rectify this:

 Use the “(3) None” setting for instances where NodeDiv = 0

 Use the “(2) Surface” setting for instances where NodeDiv > 0

5 - Component Reference

77

5.8.1.5 Input / Output

Input / Output Description Default Value

IgnoreWarns (in)
Ignore any warnings (e.g. slow progress) that are

generated on solve.
False

PreviewNd (in) Preview the nodes used in the Layout Optimization (LO). False

AutoNodes (in)

Controls how auto-generated nodes are considered

alongside UserNodes, when these have also been defined.

Default = 1.

(1) All: Generate and consider auto-nodes on and

throughout the domain

(2) Surface: Generate and consider auto-nodes only

on the surfaces of the domain (boundaries if 2D)

(3) None: Do not generate or consider auto-nodes

Note that, in all cases, supported and loaded nodes will be

considered, irrespective of whether they are auto- or

user- generated.

1

Settings (out) Settings used in the problem specification. N/A

5.8.2 Remove Duplicated Solutions (DeDupe)

5.8.2.1 Icon

Figure 94 – The Remove Duplicated Solutions (DeDupe) icon

5.8.2.2 Component

Figure 95 – The Remove Duplicated Solutions (DeDupe) component

5 - Component Reference

78

5.8.2.3 Description

Accepts a series of solutions (SolData) and removes repeated instances (i.e. those with the

same layout and optimal volume as an existing solution). This is especially useful when e.g.

comparing the effect of various levels of joint cost penalization.

5.8.2.4 Summary

The Remove Duplicated Solutions (DeDupe) component accepts a series of Solutions (Sol) and

removes repeated instances (i.e. those with the same layout and optimal volume as an existing

one). This is especially useful when e.g. comparing the effect of various levels of joint cost

penalization.

For an example of a Peregrine problem containing Remove Duplicated Solutions, run the

LO_JointCost.gh file.

5.8.2.5 Input / Output

Input / Output Description Default Value

SolData (in) Optimization solution data. N/A

SolData (out) Optimization solution data, with duplicates filtered out. N/A

5.9 License

5.9.1 Peregrine

5.9.1.1 Icon

Figure 96 – The License icon

5 - Component Reference

79

5.9.1.2 Component

Figure 97 – The License component

Right-clicking on the Peregrine License component will bring up the context menu, as seen in

Figure 98:

Figure 98 – The Peregrine License component and licensing context menu

5.9.1.3 Description

Provides information on the active license and means to switch to a different license when

required.

5.9.1.4 Summary

The License component is used to change the license type, and includes information relating to

the specific version of the software, as well as links to pertinent websites. There are five types

of license available:

1. Trial

2. Free

6 - Appendix

80

3. Cloud Zoo

4. RLM

5. Academic

Links to purchase a license and view online documentation are also present. For further details

on the different options available, please refer to Section 2.3.

5.9.1.5 Input / Output

Input / Output Description Default Value

Log (out) Outputs the results of the license check N/A

6 Appendix

6.1 Theory

6.1.1 Layout Optimization

The LO component undertakes a layout optimization of the problem. Layout optimization is a

numerical approach utilized to design (near-) optimal truss structures. It directly identifies the

optimal connectivity of nodes in a design domain.

A standard layout optimization has four steps:

1. Firstly, a design domain is specified along with load and support conditions;

2. Secondly, this design domain is discretized using nodes;

3. Thirdly, potential members are generated by connecting nodes, forming a ‘ground

structure’;

4. Finally, the most efficient arrangement of members (which will be a small subset of the

‘ground structure’) is identified by solving a linear programming (LP) problem.

An example of a layout optimization is provided in Figure 99. Here, the design space is shown in

(a), while the optimized structure is shown in (b).

6 - Appendix

81

Figure 99 – Example layout optimization

It should be noted that a ‘ground structure’ normally contains a very large number of potential

truss layouts, permitting highly efficient, though not necessarily practical, solutions to be

found.

6.1.1.1 Formulation

The LP formulation for layout optimization was first proposed by Dorn et al., (1964) and more

recently was made efficient for single and multiple load cases problems respectively by Gilbert

and Tyas (2003) and Pritchard et al., (2005). The formulation used here is:

min𝑉 = 𝐥T𝐚

Subject to:

for all 𝛼 ∈ 𝔽 {
𝐁𝐪∝ = 𝐟∝

−𝜎−𝐚 ≤ 𝐪𝛼 ≤ 𝜎+𝐚

𝐚 ≥ 0

where V is structural volume, l and a are vectors of member lengths and areas, respectively. B is

an equilibrium matrix comprising direction cosines; q is a vector containing the internal bar

forces and f is a vector containing the external forces. Also and are limiting tensile and

compressive stresses respectively, 𝔽 = {1, 2, …, p} is a load case set, where is the load case

identifier and p represents the total number of load cases.

6.1.1.2 Adaptive Solution Scheme

To improve computational efficiency of layout optimization, Gilbert and Tyas (2003) proposed

an adaptive solution scheme. It starts with a ‘ground structure’ containing only a few potential

members, and then gradually adds new members into the ‘reduced’ optimization problem. It is

important to note that the adaptive solution scheme has no impact on the structural efficiency

of the outcome truss layout, i.e., it is mathematically guaranteed that the structural volume

obtained is the same as that derived using the fully connected formulation. For more

information on this, the reader is referred to the original paper. A Python implementation of

this method is also freely available; see He et al., (2019).

6 - Appendix

82

6.1.1.3 Layout Extraction

The raw solution derived from layout optimization may contain a considerable number of thin

members. Most of these are not structurally important and can be deleted from the design. For

this reason, a threshold ‘filter’ number is used to select only the important members from the

raw solution. This ‘filter’ number will be validated so the resulting layout is as efficient as the

raw solution.

6.1.2 Geometry Optimization

The Geometry Optimization component seeks to both simplify and improve on the solution that

it is passed. It does this by undertaking a geometry optimization (GO). Here, the joint positions

of the structure as provided are moved to reduce the volume of the structure. As part of this

process, it is possible that joints may be merged.

When considering the geometry optimization process in isolation, for a problem involving a

single load case, without self-weight, the optimization problem is written as:

min
𝑥,𝑦,𝑎,𝑞

𝑉 = 𝐥(𝐱, 𝐲)T𝐚

Subject to:

𝐁(𝐱,𝐲)𝐪 = 𝐟

−𝜎−𝐚 ≤ 𝐪 ≤ 𝜎+𝐚

𝐚 ≥ 0

Where l is a vector containing the lengths of the truss bars. The optimization variables in this

case are x, y, a and q. It is evident that the objective function and equality constraint are both

now non-linear (c.f. the layout optimization problem). Without loss of generality, the GO can be

categorized as a non-linear, non-convex optimization problem.

For more information on the GO problem and the practicalities involved in its implementation,

the reader is referred to He and Gilbert (2015).

6.1.3 Heaviside Simplification

The Simplify component is used to simplify a solution by removing members, at the cost of

some volume increase. It leverages a smooth approximation to the Heaviside function, shown

below, to minimize the area of as many members as possible while maintaining a valid solution.

𝐻(𝑥) = coth(𝜇) tanh (𝜇𝑥)

This is shown graphically in Figure 100 for a range of µ values:

6 - Appendix

83

Figure 100 Heaviside smoothing for a range of values (after Fairclough et al., 2021).

It does this by reformulating the geometry optimization problem; a maximum acceptable

volume increase for the simplification process (𝜀) is specified and this is added as a constraint

to the optimization problem, and the objective function becomes one of minimizing the sum of

the Heaviside function of member areas. Thus, the objectives and constraints become:

min
𝑥,𝑦,𝑎,𝑞

𝛷𝑀 = ∑𝐻(𝑎𝑖/𝑎𝑟𝑒𝑓)

𝑚

𝑖=1

Subject to:

𝐁(𝐱,𝐲)𝐪 = 𝐟

−𝜎−𝐚 ≤ 𝐪 ≤ 𝜎+𝐚

�̃� ≤ (1 + 𝜀)𝑉𝑟𝑒𝑓

𝐚 ≥ 0

The smooth Heaviside function decreases sharply as x approaches 0, and this gradient

increases with µ. Consequently, the optimization problem will typically decrease the areas of a

few members while leaving the remainder largely unchanged. Also note that, with increasing µ,

the problem will favor more sharply reducing the area of smaller numbers of members.

Simplification iteratively solves this optimization problem for a series of increasing µ values, the

output layout from a given optimization used as the input layout for the next. Afterwards, the

algorithm attempts to filter all members with area below some threshold value, checks if the

6 - Appendix

84

new layout is valid, and if not, filters again with a smaller threshold, repeating until a valid

solution is found.

A limitation of this method is seen with problems that have small members which are crucial to

the stability of the structure. In such cases, filtering will fail for all threshold area values larger

than that of these members.

Another point to note is that a valid solution to a Heaviside simplification problem has not

been optimized for minimum volume, and for this reason, it is advisable to run a geometry

optimization step on the output layout of a Simplification optimization problem.

For more information, see He, L et al., (2018) and Fairclough et al., (2021).

6.1.4 Mirroring

6.1.4.1 Background

In many real-world applications, it is useful to be able to guarantee that the final structure is

symmetric. In Peregrine, this is made possible by its mirroring functionality. Point and line

loads, as well as supports of all types, can be mirrored.

In some cases, the design problem is inherently symmetric, so there is no reason to consider

layouts which do not exhibit symmetry. In other cases, it may simply be advantageous to

produce a solution which is symmetric. Possible reasons include:

• Design requirements

• Aesthetics: symmetric designs often look more visually appealing

• Confidence: a designed part may appear more rational to an engineer if it is symmetric.

A symmetric design may inspire greater confidence even if it makes no difference from

the point of view of analysis

• Manufacture: if two components are performing a similar task (e.g. on the left and right

side of an assembly), there is no reason to design separate parts. Having fewer different

types of component may make it easier to manufacture and catalogue the individual

components and to assemble the final structure.

In addition to being able to guarantee a symmetric design, mirroring is also beneficial from the

point of view of computational efficiency. When performing layout optimization the size of the

problem can be greatly reduced. This can greatly reduce calculation times and computational

memory requirements. In some cases, entire load cases can be removed from consideration as

they are implied by existing load cases.

6.1.4.2 Implementation

Peregrine offers three types of mirroring:

6 - Appendix

85

 Default: load is applied only to one side of the design domain (Figure 101).

 Symmetric: load is applied simultaneously on both sides of the mirroring plane, with the

direction of the load reflected (Figure 102).

 Antisymmetric: load is applied simultaneously on both sides of the mirroring plane

(Figure 103).

Figure 101 – Optimization using "Default" mirroring properties

Figure 102 – Optimization using "Symmetric" mirroring properties

6 - Appendix

86

Figure 103 - Optimization using "Antisymmetric" mirroring properties

In order to use mirroring, the user must first specify a mirror plane as input to the ProbSpec

component. It’s important that the surface normal vector of this plane is set such that the

defined supports and loading lie on the plane or to the rear (inward). If it is found to be facing in

the wrong direction, the normal of a plane can be flipped using the Grasshopper Flip Plane

(PFlip) component. The direction of the normal can be queried by combining Vector (Vec) and

Vector Display (VDis) components as shown in Figure 104:

Figure 104 - Querying the normal direction of a plane using Vec and VDis components

6 - Appendix

87

When mirroring is implemented, nodes are arranged symmetrically so that any node is either

on the mirroring plane or has a twin on the other side of the plane (Figure 105):

Figure 105 – Master nodes (blue) and their mirror nodes (red)

In Figure 105, master nodes are shown in blue and twin nodes in red. When the software

analyses potential structures, it considers all potential connections between all master nodes.

For each such master connection, there is a corresponding twin connection on the other side of

the mirroring plane. As such, only one half of the design domain needs to be defined.

In the context of layout optimization, mirroring is simply the requirement that each master

connection must have the same area as its twin. This condition ensures that the structure is

symmetric.

Without the mirroring requirement, there is no guarantee that the design calculated by layout

optimization will be symmetric. It is therefore advisable to use mirroring for problems which

are symmetric.

It is important to point out that for a symmetric problem, the mirroring requirement (i.e. that

each member must have the same area as its twin) does not impact on the efficiency of the

design. In other words, optimal designs produced with and without mirroring would require

the same overall volume of material.

6.1.4.3 Layout mirroring

Given a symmetry plane with unit normal �̂�, let 𝑝0⃗⃗⃗⃗ be an arbitrary point on the plane and 𝑝𝑖⃗⃗ ⃗ be a

node in the problem specification. In layout mirroring, for every node 𝑝𝑖⃗⃗ ⃗, a symmetry node 𝑝′𝑖⃗⃗ ⃗⃗

will be generated about the mirror plane such that

𝑝′𝑖⃗⃗ ⃗⃗ = 𝑝𝑖⃗⃗ ⃗ − 2𝑑�̂�

Where 𝑑 = (𝑝𝑖⃗⃗ ⃗ − 𝑝0⃗⃗⃗⃗) ∙ �̂� is the distance of the point 𝑝𝑖⃗⃗ ⃗ from the mirror plane.

6 - Appendix

88

Members generated by solving the optimization problem will also be mirrored. The area 𝑎𝑖 of

the ith member in a domain defined in the problem specification will match the area 𝑎′𝑖 of the

mirrored member:

𝑎𝑖 = 𝑎′𝑖

Note that mirroring generates a symmetrical structure irrespective of load and support

conditions, such that forces in mirrored members are not required to be the same.

Consequently, a mirrored structure represents the minimum volume symmetrical solution for a

particular problem, and not necessarily the minimum volume solution.

6.1.4.4 Load mirroring

There are two types of load mirroring: symmetry and antisymmetry. In both cases, the

mirrored load has the same loading position and the same magnitude. Their directions are

different. Given a load 𝑓 , its symmetrical load 𝑓′𝑆⃗⃗ ⃗⃗ ⃗ is calculated using:

𝑓′𝑆⃗⃗ ⃗⃗ ⃗ = 𝑓 − 2 (𝑓 ∙ �̂�)�̂�

Where �̂� is the unit normal of the mirror plane. Its antisymmetrical load 𝑓′𝐴𝑆
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ is obtained using:

𝑓′𝐴𝑆
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ = − 𝑓′𝑆⃗⃗ ⃗⃗ ⃗

6.1.4.5 Support mirroring

Supports are automatically mirrored in the mirror plane.

6.1.5 Example Problem

The following example considers both geometry optimization (GO) and joint length

rationalization of a problem. It is taken from He and Gilbert (2015).

The example was first considered by Hemp (1974). The problem involves application of a point

load at mid-height between two pinned supports. Hemp quoted the analytical volume to be

4.34P L/σ, but Lewinski (2005) repeated the calculations using greater precision to obtain a

more accurate solution, 4.32168P L/σ.

A sample layout optimization solution and corresponding rationalized (GO) solutions are also

shown in Figure 106. It is evident that both rationalization techniques allow simplified

solutions to be obtained when compared to the original layout optimization solution (a).

However, whereas the volume associated with the solution obtained using joint length

rationalization (b) is 1.49 % above the exact value, the solution obtained using geometry

optimization rationalization (c) is only 0.23 % above the exact value, a significant improvement

on the original layout optimization error of 0.75 %.

7 - References

89

Figure 106 – Rationalization of a cantilever truss (a) by using joint cost and GO (b) and GO (c)

6.2 Known Issues

• It is not possible to prescribe limits on structural deflection. To address this, stress

limits can be scaled down to compensate.

7 References

Dorn W (1964). Automatic design of optimal structures. Journal de Mecanique, 3:25–52.

Gilbert M and Tyas A (2003), Layout optimization of large-scale pin-jointed frames. Engineering

Computations, 20(8):1044-1064.

He L and Gilbert M (2015), Rationalization of trusses generated via layout optimization.

Structural and Multidisciplinary Optimization, 52(4):677-694.

He, L., Gilbert, M., Shepherd, P., Ye, J., Koronaki, A., Fairclough, H., Davison, B., Tyas, A., Gondzio,

J., & Weldeyesus, A. (2018). In: Mueller C, Adriaenssens S (eds) Creativity in Structural Design:

A new conceptual design optimization tool for frame structures: Proceedings of the IASS

Symposium 2018.

Fairclough HE, Gilbert M, Pichugin AV, Tyas A, Firth I (2018), Theoretically optimal forms for

very long-span bridges under gravity loading. Proceedings of the Royal Society A:

Mathematical, Physical and Engineering Sciences , 474:20170726.

Fairclough, H.E., He, L., Pritchard, T.J. et al., (2021). LayOpt: an educational web-app for truss

layout optimization. Struct Multidisc Optim 64, 2805–2823

http://dx.doi.org/10.1108/02644400310503017
http://dx.doi.org/10.1007/s00158-015-1260-x

7 - References

90

He, L., Gilbert, M. Rationalization of trusses generated via layout optimization. Struct Multidisc

Optim 52, 677–694 (2015). https://doi.org/10.1007/s00158-015-1260-x

He L, Gilbert M and Song X (2019), A Python script for adaptive layout optimization of

trusses. Structural and Multidisciplinary Optimization, 60(2):835–847.

Hemp WS (1974), Michell frameworks for uniform load between fixed supports. Engineering

Optimization 1:61–69.

Lewinski T (2005) Personal communication.

Parkes EW (1975), Joints in optimum frameworks. International Journal of Solids and Structures,

11(9):1017–1022.

Pritchard T, Gilbert M and Tyas A (2005) Plastic layout optimization of large-scale frameworks

subject to multiple load cases, member self-weight and with joint length penalties. Proc of 6th

World Congresses of Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil.

1

The Innovation Centre

217 Portobello

Sheffield, S1 4DP

United Kingdom

limitstate.com/peregrine

info@limitstate.com

+44 (0) 114 224 2240

https://www.limitstate.com/peregrine
mailto:info@limitstate.com

