EUROCODE 7 DESIGN APPROACH 1
Basic procedure (incorporates some simplifications)

START
Assess design scenario

List all possible limit states:
ULS & SLS

For each limit state
Assess worst credible scenario (e.g. water pressures)

Choose appropriate calculation model

Select characteristic actions (e.g. loads):
- \(F_k \)
- \(X_k \) relevant to calculation model

Assess worst credible scenario (e.g. water pressures)

Ground properties
- SI
- Lab testing
- Experience

Assess design scenario

Statistics
Judgement
Construction process

Calculate design actions:
- \(F_d = \gamma_F F_k \)
- \(X_d = X_k / \gamma_m \)

Calculate design action effect (e.g. load):
- \(E_d \)
- \(R_d \)

Ensure \(E_d \leq R_d \)

Calculate design action effect (e.g. settlement):
- \(E_d \)
- \(C_d \)

Ensure \(E_d \leq C_d \)

Combination 1: Typically governs failure in the structure

Combination 2: Typically governs failure in the ground

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factor</th>
<th>Combination 1</th>
<th>Combination 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial load factors ((\gamma_F))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanent unfavourable action (\gamma_G)</td>
<td>1.35</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Variable unfavourable action (\gamma_Q)</td>
<td>1.50</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>Permanent favourable action (\gamma_G)</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Partial material factors ((\gamma_m))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tan\phi')</td>
<td>(\gamma_m)</td>
<td>1.00</td>
<td>1.25</td>
</tr>
<tr>
<td>Effective cohesion (c')</td>
<td>(\gamma_c')</td>
<td>1.00</td>
<td>1.25</td>
</tr>
<tr>
<td>Undrained shear strength (c_u)</td>
<td>(\gamma_c')</td>
<td>1.00</td>
<td>1.40</td>
</tr>
<tr>
<td>Unit weight of ground (\gamma)</td>
<td>(\gamma_g)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>